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The cellular and molecular mechanisms of neurodevelopmental

conditions such as autism spectrum disorders have been

studied intensively for decades. The unavailability of live patient

neurons for research, however, has represented a major

obstacle in the elucidation of the disease etiologies. Recently,

the development of induced pluripotent stem cell (iPSC)

technology allows for the generation of human neurons from

somatic cells of patients. We review ongoing studies using

iPSCs as an approach to model neurodevelopmental

disorders, the promise and caveats of this technique and its

potential for drug screening. The reproducible findings of

relevant phenotypes in Rett syndrome iPSC-derived neurons

suggest that iPSC technology offers a novel and unique

opportunity for the understanding of and the development of

therapeutics for other autism spectrum disorders.
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Introduction
The limited potential of neuronal samples from post-

mortem brains and the inability to isolate populations of

neurons from living subjects has blocked progress toward

understanding the cellular and molecular mechanisms

behind several neurodevelopmental disorders. Studies

of postmortem tissue are problematic in developmental

disorders as disease onset usually precedes death by

decades. Moreover, frozen tissue sections are of limited

use for studying cellular physiology and neural networks.

Peripheral tissues, such as blood, are not suitable for

relevant biological experiments since they are not the

target tissue. Mathematical or computational models are

also restricted by nature. Brain imaging allows you to

study circuitries at a low magnification and does not

reveal details of short circuitries in the brain. Finally,

animal models often do not recapitulate complex human
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diseases, and have been particularly problematic in the

case of human neurodevelopmental disease such as aut-

ism. Thus, the field lacks a human model that could

provide unlimited supplies of neurons so experiments

can be performed in controlled situations.

Genetic reprogramming provides a complementary

model as it allows the genomes of human individuals

afflicted with neurodevelopmental diseases to be cap-

tured in a pluripotent stem cell line. Reprogramming of

somatic cells to a pluripotent state by overexpression of

specific genes has been accomplished using mouse and

human cells [1,2��]. These reprogrammed cell types,

named induced pluripotent stem cells (iPSCs) can be

derived from cells isolated from peripheral tissues of

normal individuals or people affected from several con-

ditions [3]. Isogenic pluripotent cells are attractive not

only for their potential therapeutic use with lower risk of

immune rejection, but also for their prospects to further

understanding of complex diseases with heritable and

sporadic conditions [4,5]. iPSCs can then be differen-

tiated to human neurons to evaluate whether the captured

genome alters cellular phenotypes in a similar manner as

predicted by the clinical data or other mechanistic

models. Although iPSCs have been generated for several

neurological diseases the demonstration of disease-

specific pathogenesis and phenotypic rescue in relevant

cell types is a current challenge in the field, with only a

handful proof-of-principle examples to date [6]. None-

theless, the examples reflect the potential that this new

model brings to disease modeling.

Considerations about iPSCs as a model for
neurodevelopmental diseases
As with other models, the iPSC system also has important

limitations. Cells in culture represent a research artifact.

Thus, it is possible that important signaling information is

missing or overstimulated in the system, masking poten-

tial cellular phenotypes or creating artificial ones. The

discrimination between what is real and truly important in
vivo will probably depend on validations coming from

other models. Another challenge is the derivation of

relevant neuronal subtypes. Specific protocols for sub-

types of neurons are currently being developed and need

further optimization. Alternatively, the relevant neuronal

subtype needs to be sorted out or visualized using specific

reporter genes. Unfortunately, the characterization of

human neuronal subtypes is modest owing to the lack

of knowledge on the temporal expression of specific

genes and respective promoter activation. Recent

efforts on human brain expression maps will certainly

help [7,8].
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Another important consideration is the use of appropriate

controls. Intuitively, the ideal controls are the ones that

differ from the patient by only the specific genetic defect.

The targeted manipulation of the iPSCs to introduce

genetic mutations in control cell lines or to restore the

mutation from a patient cell line is a promising tool [9,10].

Another strategy to generate ‘isogenic’ cell lines is to take

advantage of X-inactivation in iPSC clones coming from

female cell lines. Owing to the fast X inactivation process

during reprogramming, it is possible to generate iPSC cell

clones carrying the mutant or the wild-type version of a X-

linked affected gene. That strategy was used to model Rett

syndrome, using female patients with mutations in the X-

linked MeCP2 gene [11��,12]. For non-monogenetic dis-

eases, or when the mutations are not known, such as

sporadic autism, the challenge is greater. Behavioral vari-

ation between cell lines and iPSC clones from the same

individual can influence phenotypic readouts. Unfortu-

nately, the generation of individual iPSC clones is also

expensive and time-consuming, restricting the number of

cell lines that an individual laboratory can handle. A

possible useful strategy for these types of disease is the

coordination of consortium initiatives, where multiple sites

would contribute to the pool of different cell types and

phenotypic assays. Nonetheless, methods for generating

neurons at a large scale and automated phenotypic analyses

will become essential to realize such an endeavor.

Modeling neurodevelopmental diseases in a
dish
A few years after the success of somatic cell reprogramming

was reported in 2006, iPSC technology has been exten-

sively used to model several neurodevelopmental diseases

including a monogenic form of autism spectrum disorders

(ASDs). Rett syndrome (RTT) [11��,12,13,15], sporadic

form of Schizophrenia (SCZD) [16�], fragile X syndrome

(FXS) [17], and Timothy syndrome (TS) [18��]. These

studies were able to demonstrate that such disease-specific

iPSC-derived neurons elegantly recapitulated relevant

cellular and/or molecular phenotypes previously reported

using different approaches, for example, postmortem

human brain, and mouse model. In addition to those

disorders, somatic cell reprogramming has recently been

conducted for modeling another early onset neurological

diseases including CDKL5-related disorder (a RTT var-

iant) [19], and genomic imprinting disorders such as Angel-

man syndrome (AS) [20] and Prader-Willi syndrome (PWS)

[20,21]. Successful neuronal differentiation was shown in

these studies but the phenotypes of such disease-specific

iPSC-derived neurons have not yet been examined. The

neurodevelopmental diseases that have been modeling

using human iPSC thus far and their significant findings

are summarized in Table 1.

Modeling Rett syndrome with iPSCs
We recently demonstrated the utility of induced pluripo-

tent stem cells to investigate the functional consequences
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of mutations in the gene encoding the Methyl CpG bind-

ing protein-2 (MeCP2) on neurons from RTT patients, a

syndromic form of ASD [11]. RTT patients appear to

develop normally for up to 6–18 months, after which they

enter a period of regression characterized by deceleration

of head growth and loss of acquired motor and language

skills. Patients often develop autistic behaviors, stereotypic

hand wringing, abnormal breathing and seizures [22].

Postmortem analyses of affected individuals have revealed

phenotypes at the cellular level, including decreased soma

size, reduced dendritic branching, and altered dendritic

spine density and morphology [23,24].

MeCP2 is an abundant nuclear protein implicated in a

number of molecular functions, but was first identified as

an epigenetic regulator of target genes by binding to

methylated CpG dinucleotides [25]. Long established

as a repressor of transcription, MeCP2 has recently been

shown to bind active genes as well as to influence RNA

splicing [22,26]. MeCP2 is found in a wide variety of

tissues but appears to be most abundant in the brain [27].

Accordingly, MeCP2 appears to be critical for normal

CNS development and function, and its dysfunction

results in abnormal neurological phenotypes (Figure 1).

Neurons derived from RTT-iPSCs carrying four different

MeCP2 mutations showed several alterations compared

to five healthy non-affected individuals, such as

decreased soma size, altered dendritic spine density

and reduced excitatory synapses. These phenotypes were

validated using wild-type MeCP2 cDNA and specific

shRNAs against MeCP2 in gain-and-loss of function

experiments to demonstrate causality. Importantly, some

of these cellular defects were immediately validated by

independent groups, revealing the robustness and repro-

ducibility of the system [12,13,15]. We were able to

rescue the defects in the number of glutamatergic

synapses using two candidate drugs, insulin-like growth

factor 1 (IGF1) and gentamicin. IGF1 is considered to be

a candidate for pharmacological treatment of RTT and

potentially other CNS disorders in ongoing clinical trials

[28]. Gentamicin, a read-through drug, was also used to

rescue neurons carrying a nonsense MeCP2 mutation, by

elevating the amount of MeCP2 protein.

Moreover, we took advantage of the RTT-iPSCs to

demonstrate that neural progenitor cells carrying MeCP2

mutations have increased susceptibility for L1 retrotran-

sposition. Long interspersed nuclear elements-1 (LINE-

1 or L1s) are abundant retrotransposons that comprise

approximately 20% of mammalian genomes [29–31] and

are highly active in the nervous system [32�,33]. Our data

demonstrate that L1 retrotransposition can be controlled

in a tissue-specific manner and that disease-related

genetic mutations can influence the frequency of

neuronal L1 retrotransposition [34]. The work revealed

an unexpected and novel phenomenon, adding a new
www.sciencedirect.com
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Table 1

Examples of neurodevelopmental diseases that have been modeling using human iPSC

Disease Incidence Age of

neuropathological

onset

Key gene

(chromosome)

Genetic mutation

in fibroblasts used

for reprogramming

Reprogramming

method

Neuronal differentiation

and validation

Relevant neuronal

phenotype

Candidate

drug

Reference

RTT 1:10,000

(female) [22]

½–1½ years

old [22]

MeCP2 (X) Nonsense

(Q244X)

Missense

(T158M, R306C)

Retrovirus

(4 factors)

Yes; TuJ1+, MAP2+, GABA+,

Synapsin+, VGLUT1+

Electrophysiologically active

Reduced soma size, dendritic

spine density and synapses

Altered Ca2+ signaling

electrophysiological defect

IGF1 Marchetto

[11��]

Null (Dexon3-4)

Missense

(T158M, R306C)

Retrovirus

(4 factors)

Yes; MAP2+ Reduced soma size No Cheung [12]

Nonsense (Q244X)

Missense

(T158M, R306C)

Retrovirus

(4 factors)

Yes; TuJ1+, SCN1A/B+ Lower expression of mature

neuron markers

No Kim [15]

Nonsense

(V247X, R294X)

Missense

(T158M, R306C)

Retrovirus and

Lentivirus

(4 factors)

Yes; TuJ1+ Reduced nuclear size No Ananiev [13]

FXS 1:4000–1:6000

[36]

<3 years old [36] FMR1 (X) >200 CGG repeats

in 50UTR

Retrovirus

(4 factors)

No No No Urbach [37��]

>700 CGG repeats

in 50UTR

Retrovirus

(4 factors)

Yes; TuJ1+ Fewer and shorter neurites No Sheridan [17]

SCZD 1:100 [38] Typically

15–25 years old

In rare case,

<10 years old [39]

DISC1 (1) Dexon-intron12

region (4bp)

Integration-free

episomes

(4 factors)

No No No Chiang [40]

Sporadic Unknown Tetracyclin-

inducible

lentivirus

(5 factors)

Yes; TuJ1+, MAP2+, PSD95+,

VGLUT1+, GAD65/67+

Electrophysiologically active

Reduced neuronal

connectivity and neurite

number, decreased

PSD-95 expression

Loxapine Brennand

[16�]

TS Unknown

(20 cases

reported

worldwide [41])

>2.5 years

old [41,42]

CACNA1C

(12)

Missense

(G406R)

Retrovirus

(4 factors)

Yes; MAP2+, VGLUT1/2+,

TH+, GAD65/67+, CTIP2+,

FOXP1+, SATB2+,

Electrophysiologically active

Defect in Ca2+ signaling

and electrophysiology,

decreased SATB2 expression
§Higher expression of TH

and catecholamines

Roscovitine Pasca [18��]

CDKL5-

related

disorder

Unknown

(80 cases

reported

worldwide [43])

2–3 months

old [44]

CDKL5 (X) Nonsense (Q347X)

Missense (T288I)

Retrovirus

(4 factors)

Yes; TuJ1+, MAP2+,

VGLUT1/2+, GAD65/67+

No No Amenduni

[19]

AS 1:12,000 [45] 2–3 years

old [46]

Maternal

UBE3A (15)

Maternal

D15q11-q13

(including UBE3A)

Retrovirus

(5 factors)

Yes; TuJ1+, MAP2+,

SynapsinI+, PanNav+

Electrophysiologically active

No No Chamberlain

[20]

PWS 1:15,000 [47] 2–6 years

old [48]

Unknown

in paternal

15q11-q13

(15)

Paternal

D15q11-q13

Retrovirus

(5 factors)

No No No Chamberlain

[20]

t(15;4)(q11.2;q27) Retrovirus

(4 factors)

Yes; TuJ1+, MAP2+ No No Yang [21]

4 factors, OCT4, SOX2, KLF4 and c-MYC; 5 factors, OCT4, SOX2, KLF4, c-MYC and LIN28; §, not observed in animal.
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Figure 1

WT RTT

(b)

(e)

(a)
soma soma

(c)

(d)

dendrite

axon electrophysiology

glutamatergic synapse dendritic
spine
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Phenotypes demonstrated by human iPSC-derived RTT neurons. We generated a human cellular model for RTT by reprogramming the fibroblasts of

human patients to iPSCs. Neurons differentiated from these iPSCs exhibited cellular phenotypes such as (a) smaller soma size, (b) reduced dendritic

branching, and (c) fewer glutamatergic synapses and (d) dendritic spines. These morphological alterations contributed to the functional phenotype of

(e) altered electrophysiology, as RTT-neurons demonstrated a decreased frequency of spontaneous postsynaptic currents.
layer of complexity to the understanding of genomic

plasticity. These observations bring valued information

for RTT and, potentially, other ASD patients, since they

suggest that pre-symptomatic defects may represent nov-

el biomarkers to be exploited as diagnostic tools. The data

also suggest that early intervention may be beneficial.

Using human neurons as a drug-screening
platform
Our studies performed in RTT highlighted the potential

of iPSC models in toxicology and drug screening. Even

better, the IGF1 overcorrection observed in some RTT

neurons [11��] indicate that the iPSC technology not only

can recapitulate some aspects of a genetic disease but also

can be used to better design and anticipate results from

translational medicine. This cellular model has the poten-

tial to lead to the discovery of new compounds to treat

different neurodevelopmental diseases.

Drug-screening platforms require ‘screenable’ robust

phenotypes in target cell types, such as iPSC-derived

neurons. The neuronal differentiation strategies reported

to date are not current capable of providing vast numbers

of homogenous subtypes of neurons in a reliable, repro-

ducible, and cost-effective fashion. However, with better
Current Opinion in Neurobiology 2012, 22:785–790 
markers and gene reporters, it will be possible to isolate

pure populations of desired cell types in a large scale.

Cellular morphology, such as soma size or dendritic spine

density, can be captured using high-content imaging

software. Early biochemical and gene expression read

outs can be useful alternatives. However, late read outs,

such as electrophysiological records, may not be ideal

owing to the time in culture necessary to reach neuronal

maturation. It is certainly possible to use stressors or

other environmental agents to enhance the differences

between control and patient groups. An alternative

solution may emerge from the direct conversion of

neurons from peripheral cells, skipping the pluripotent

state [35]. This technology is currently inefficient in

humans, difficult to scale up and has the disadvantage

to skip neuronal development stages. Finally, read outs

needed to be suitable for the instrumentation demanded

for high-throughput screening for drug discovery. More

scalable assays will allow characterization of increased

numbers of control and patient neurons.

Conclusion
The iPSC strategy is a novel and complementary

approach to model neurodevelopmental diseases.

Although this technology is still in its early stage, it
www.sciencedirect.com
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potentially demonstrated the ability to recapitulate

relevant neuronal defects of those diseases. This model

has the capacity to unify data generated from brain ima-

ging, animal work, and genetics, generating downstream

hypotheses that could be tested in well-controlled exper-

iments in the relevant cell types. As several neurodevelop-

mental disorders share similar neurological symptoms

while arising from distinct genetic variations, morphologi-

cal and functional comparison of patient-specific iPSC-

derived neurons would provide insight into common trends

and unique phenotypes of each disease. This patient-gene-

phenotype cellular analysis can ultimately contribute to

the establishment of the links between genes and behavior.

In the future, the iPSC approach may also be used as

diagnostic tools. Finally, as the technology evolves, it will

reach the point of personalized medicine, making predic-

tions about the efficiency of certain drugs and doses in

determined individuals.
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