
Altex 31, 2/14 157

Of Rodents and Men: Species-Specific Glucose 
Regulation and Type 2 Diabetes Research 
P. Charukeshi Chandrasekera and John J. Pippin
Physicians Committee for Responsible Medicine, Washington DC, USA

Summary
Type 2 diabetes mellitus (T2DM) has reached epidemic proportions worldwide and animal models  
mimicking human T2DM are widely used to study mechanisms of disease and to develop 
pharmacotherapeutics. Over the last three decades, rodent models of T2DM have yielded more than  
50 publications per month; however, many details of human T2DM pathogenesis remain unclear,  
and means of preventing disease progression remain elusive. This review investigates the reasons for this 
translational discrepancy by analyzing the experimental evidence from rodent models of T2DM.  
The analysis reveals significant species-specific differences at every level of glucose regulation, from  
gene/protein expression, cellular signaling, tissue and organ to whole organism level, when  
compared with data acquired using human cells, tissues, organs, and populations. Given the extensive 
species-specific barrier that creates an immutable translational gap, there is an urgent need to  
further employ and develop human-based research strategies to make significant strides against  
the current T2DM epidemic.
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only a limited number of anti-diabetic drugs are in clinical use 
for humans, most of which have adverse health effects, but little 
impact on disease progression, and none of which cures t2DM 
or clearly prolongs life.

the purpose of this review is to examine the underlying mo-
lecular, biological, and physiological differences – from gene 
regulation to whole-animal and population levels – that help ex-
plain why rodents do not serve as reliable models for studying 
human t2DM. this review will also address how researchers 
may overcome this translational barrier by employing a wide 
range of human-based investigational methods that will pro-
mote human-relevant discoveries while reducing – and eventu-
ally replacing – the use of animals in t2DM research. 

2  T2DM: The characteristic pathophysiology in 
humans 

the natural history of human t2DM involves a progressive 
transition from normal glucose regulation to a pre-diabetic stage 
characterized by impaired fasting glucose and impaired glucose 
tolerance to t2DM characterized by overt hyperglycemia re-
sulting from a combination of peripheral insulin resistance and 
β-cell dysfunction (ADA, 2012; Kahn et al., 2006). Risk factors 
associated with t2DM in humans include obesity, dyslipidemia, 
hypertension, lifestyle factors such as physical inactivity and 
excessive dietary intake, and genetic predisposition (Zimmet et 

1  Introduction 

Dysregulation of glucose homeostasis can result in serious 
health consequences, most prominently type 2 diabetes mellitus 
(T2DM). T2DM has reached epidemic proportions over the last 
three decades, and it is predicted that by 2030, more than 366 
million people worldwide will have T2DM (Wild et al., 2004). 
In the United States, the prevalence of T2DM is 26 million with 
another 79 million considered pre-diabetic, and it is estimated 
that one in three Americans will have diabetes by 2050 (CDC, 
2011). Thus it is imperative to develop strategies to understand, 
prevent, treat, and, hopefully, cure t2DM. In order to achieve 
these goals, it is necessary to further our understanding of the 
pathophysiology of this multifactorial disease. 

An abundance of animal models displaying various character-
istics of t2DM have been generated to study the underlying pa-
thology and to develop potential treatments. these efforts have 
created a considerable knowledge base regarding rodent glucose 
biology, from gene regulation to the maintenance of whole-an-
imal glucose homeostasis. However, the precise molecular and 
biochemical mechanisms leading to disease pathogenesis in hu-
mans remain unclear and treatment methods for humans remain 
unsatisfactory. erroneous extrapolations from animal research 
have resulted in poor translational efficacy at every level from 
molecular mechanistic findings to phenotypic and natural his-
tory findings to the development of effective pharmaceuticals. 
Despite the wealth of knowledge acquired from rodent studies, 
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al., 2001). T2DM may be foreshadowed by a specific metabolic 
syndrome that includes abdominal obesity, hypertension, dysli-
pidemia, impaired fasting glucose, and hypercoagulability. the 
morbidity and mortality associated with human t2DM – retin-
opathy, nephropathy, neuropathy, coronary heart disease, pe-
ripheral arterial disease, and stroke – derive from dysregulation 
of glucose homeostasis, in combination with hypertension and 
dyslipidemia, and the resulting vascular pathologies (Forbes and 
Cooper, 2013). Elucidating the biochemical mechanistic links 
among T2DM risk factors, insulin resistance, pancreatic β-cell 
dysfunction and t2DM sequelae – as these occur in humans – is 
therefore key to understanding and treating this disease. 

3  T2DM: Rodent models of human T2DM

A large number of animal models have been generated to study 
various aspects of t2DM. A PubMed database search focused 
on rodent models of T2DM revealed that more than 50 articles 
per month have been published over the last three decades, al-
lowing for possible duplication among studies (Fig. 1). Rodent 
species have been preferred since they facilitate progression 
from hypothesis generation to data acquisition with relative 
ease in a manageable period of time due to factors such as short 
breeding periods, short lifespan, ease of use for genetic manipu-
lation, low maintenance cost, and ease of handling. 

Obese and non-obese rodent models of t2DM have been 
generated by several methods, including surgical, chemical, 

dietary and genetic manipulations, and combinations thereof. 
the standard surgical approach for producing non-obese mod-
els of t2DM is partial or complete pancreatectomy, in which 
the extent of pancreatectomy appears to determine the severity 
of the resulting condition (Islam and Loots du, 2009). T2DM 
is chemically induced in rodents using drugs that destroy pan-
creatic β-cells by mechanisms involving irreversible cytotoxic-
ity (Lenzen, 2008). Nutritional modification has been used to 
model the metabolic disorders characteristic of human obesity, 
primarily by increasing the fat content in rodent feed (Lutz and 
Woods, 2012). Genetic models of rodent T2DM can be broadly 
categorized into two major groups: spontaneous genetically 
derived models (naturally occurring mutations such as leptin 
and leptin receptor mutations) and genetically modified models 
(transgenic, knock-out, and knock-in models). Transgenic mod-
els are designed primarily to address the pathophysiological 
consequences resulting from global or tissue-specific targeted 
disruption or overexpression of a defined single gene (or multi-
ple genes) on numerous signal transduction pathways involved 
in glucose homeostasis (Neubauer and Kulkarni, 2006). 

these animal models display various phenotypic manifes-
tations of human t2DM, albeit to varying degrees of disease 
penetrance, severity, and duration. these features include fast-
ing and non-fasting hyperglycemia, reduced pancreatic mass, 
reduced glucose-stimulated insulin secretion, decreased serum 
insulin levels, glucose intolerance, dyslipidemias, and obesity 
(Chatzigeorgiou et al., 2009). However, most rodent models do 
not replicate the natural history and pathophysiological mecha-

Fig. 1: Scientific publications based on rodent models 
of type 2 diabetes
The PubMed database was searched to determine the 
number of papers published with rodent models of T2DM 
with filters “other animals” and “publication dates” (1982-
2012). For the data shown, relevant papers were obtained 
using combinations of specific search terms: “model name”, 
“rodents”, and “type 2 diabetes.” The mean number of rodent 
studies published monthly was 56. Please note that this 
number may vary slightly due to the difficulty in teasing out 
potential duplication from one category to another. *Other 
rat models included in this search were GK (Goto-Kakizaki), 
OLETF (Otsuka Long Evans Tokushima Fatty), and JCR: 
LA-cp. **Searching for “rodent” diabetes chemically induced 
with streptozotocin (STZ) and alloxan (ALX) yielded 17,367 
and 2,437, respectively, for a total of 19,804 publications. 
However, STZ and ALX have been used widely to generate 
models of type 1 diabetes as well. Therefore, random 
sampling of references was taken in order to estimate the 
number of papers that utilized STZ to specifically study 
T2DM. The results indicate that at least 20% of the published 
work can be assigned to the T2DM category. Thus, the 
value reported here reflects 20% of 19,804, but the actual 
number may be higher. ***Searching PubMed with the terms 
“transgenic” and “type 2 diabetes” yields 1466 papers, but is 
likely higher since many “knock-out” and “knock-in” models 
may not have been included. 
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direct dominant role in the control of glucose homeostasis – en-
docrine pancreas, skeletal muscle, liver, and adipose tissue. 

4.1  Glucose biology: Nucleic acid level 
Interspecies differences at the nucleic acid level exist at various 
stages, including but not limited to chromosomal regulation, 
orthologous and lineage-specific paralogous gene regulation, 
tissue-specific transcriptional regulation, total gene (mRNA) 
expression, and post-transcriptional regulation. Humans have 
only a single copy of the β-cell-specific and glucose-regulat-
ed insulin gene, located on chromosome 11 (Owerbach et al., 
1980). In contrast, rodents are unique compared to all other 
mammals in that they express two functional forms of insulin 
from two non-allelic insulin genes. In mice, they are located 
on chromosomes 19 (gene 1) and 7 (gene 2), and in rats, both 
insulin genes are located >100 Mb apart on chromosome 1 
(Lomedico et al., 1979; Soares et al., 1985; Wentworth et al., 
1986; Davies et al., 1994). In general, rodent insulin gene 2 is 
thought to be the ortholog of the human insulin gene based on 
gene structure and sequence homology, but both insulin genes 
are functionally expressed and regulated in rodents under basal 

nisms that lead to the human diabetogenic phenotype, and no 
individual model or combination of models replicates the com-
plex human t2DM disease state. 

4  From rodents to humans: Species-specificity of 
glucose biology

the coordinated function of multiple organs as well as genetic 
and environmental factors affect β-cell function and tissue in-
sulin sensitivity, all of which contribute to the etiopathology of 
this polygenic multifactorial disease in humans. Increased use 
of human-based methodologies over the last decade has signifi-
cantly broadened our understanding of the species-specificity of 
glucose biology. It is now apparent that crucial differences exist 
at every level of glucose regulation, from gene and protein ex-
pression and intracellular signaling to tissue, organ, and whole 
organism manifestations, and extending to population and envi-
ronment levels (Fig. 2). Given the breadth of this topic and the 
extensive literature (Fig. 1), the following sections will address 
interspecies differences only in tissues and organs that play a 

Fig. 2: Species-specificity of glucose regulation
This figure illustrates examples of rodent-human species-
specific differences that exist at every level of glucose 
regulation, from nucleic acid to environment level:  
(1) Nucleic acid level – one insulin gene in humans vs 
two non-allelic insulin genes in rodents; (2) Protein level – 
sequence divergence in rodents in the region that confers 
amyloidogenicity to human islet amyloid polypeptide;  
(3) Pathway level – species disparity in KATP-independent 
second phase insulin secretion due to altered signaling 
via cAMP/PKA and PLC/IP3/PKC pathways; (4) Cellular 
level – control of β-cell proliferation (G1/S transition) differs 
in humans; (5) Tissue level – primary site of glucose 
clearance is skeletal muscle tissue in humans and liver in 
rodents; (6) Organ level – pancreatic cytoarchitecture is 
strikingly different and this has functional consequences, 
as cell-to-cell interactions within the islet markedly vary 
between humans and rodents; red cells=insulin-secreting 
beta cells, green cells=glucagon-secreting alpha cells, 
blue cells=somatostatin-releasing delta cells; (7) Organism 
level – progressive transition from insulin resistance to 
overt hyperglycemia over a long period of time in humans 
versus rapid disease progression and T2DM from birth 
often observed in rodents (B=birth, A=adult, D=death); 
(8) Environment level – uncontrolled life style, epigenetic 
factors in humans versus controlled laboratory environments 
for rodents. Refer to text for further details. cAMP-cyclic 
adenosine monophosphate; PKA-protein kinase A; PLC-
phospholipase C, IP3-inositol triphosphate; PKC-protein 
kinase C, KATP-ATP-sensitive potassium channel. Tissue 
staining images of human and rodent pancreata are 
reprinted from “Seminars in Cellular and Developmental 
Biology, Vol 24, Caicedo A, Paracrine and autocrine 
interactions in the human islet: more than meets the eye, 
pages 11-21 (2012)”, with permission from Elsevier.
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and high glucose concentrations that stimulate insulin biosyn-
thesis (Cordell et al., 1982; Kakita et al., 1982; Wentworth et 
al., 1986, 1992; Babaya et al., 2006). In addition to primary 
rodent β-cells, two functional, glucose-sensitive insulin genes 
are expressed in the heterologous rodent β-cell line MIN6, 
which is widely used to model human β-cell function in vitro 
(Roderigo-Milne et al., 2002). Comparative sequence analy-
sis has revealed that the overall homology of the insulin pro-
moter (-600 to +1 region) between humans and rodents is only  
~45-48%. Many features of the cis-regulatory elements, such 
as the cyclic AMP response element, negative regulatory ele-
ment, and CCAAT box, also display marked species specificity 
(Hay and Docherty, 2006; Boam et al., 1990). The exact and 
relative contributions of the two insulin genes to rodent glu-
cose regulation remain unclear and often overlooked, thereby 
limiting data extrapolation to the single insulin gene system in 
humans. These effects may be further amplified since insulin 
transcriptionally regulates the expression of more than 150 
genes in various tissues (Desvergne et al., 2006). 

Species-specific differences also occur at proximal trans-act-
ing factor expression and localization, post-translational modi-
fications, DNA binding, and autoregulation. For example, the 
V-maf musculoaponeurotic fibrosarcoma oncogene homolog 
(Maf), hepatocyte nuclear factor (HNF), and pancreatic duode-
nal homeobox 1 (Pdx-1) transcription families play key roles 
in human and rodent islet and liver transcriptional regulation. 
However, their expression is differentially regulated in human 
and mouse islets with respect to spatio-temporal cell type-spe-
cific isoform expression and glucose-mediated regulation (Art-
ner et al., 2010; Dai et al., 2012; Hang and Stein, 2011; Dorrell 
et al., 2011; Harries et al., 2009). Interestingly, mice lacking 
HNF1a, 1b, and 4a isoforms – genes directly linked to maturity 
onset diabetes of the young (MODY) in humans – do not emu-
late human MODY-like phenotypes (Harries et al., 2009).

There is marked divergence in DNA binding between mouse 
and human glucose regulatory transcription factors. For exam-
ple, of 4000 orthologous gene pairs tested in human and mouse 
liver, “41%-89% of the orthologous promoters bound by a pro-
tein in one species were not bound by the same protein in the 
second species” (Odom et al., 2007). The location of binding 
events also varied to an extent that could not be predicted from 
rodent-human sequence alignments, and transcriptional pro-
grams in homologous tissues (at least in the liver) appear to be 
directed by species-specific gene sequences (Odom et al., 2007; 
Wilson et al., 2008). Autoregulation can also be species-specif-
ic: despite significant sequence homology between mouse and 
human promoter, the CCAAt/enhancer binding protein alpha 
(C/EBPα), a transcription factor critical for regulating liver-
specific gene expression (including those of gluconeogenic, 
cell cycle control, and apoptotic genes), employs a different 
autoregulatory mechanism in mice (direct binding to a cis ele-
ment) as compared to humans (indirect trans-acting autoregu-
lation via upstream stimulatory factor) (Schrem et al., 2004; 
Timchenko et al., 1995).

the above examples provide only a glimpse into the species 
specificity of the complex gene regulatory networks involved 
in glucose homeostasis. Although the same families of genes 

and transcription factors may be involved, differential expres-
sion and regulation manifest divergent phenotypes between ro-
dents and humans. With additional regulation by many other 
factors such as micro RNA (Klein et al., 2013; Lin et al., 2012), 
chromatin packing and cis-regulatory element-specific chro-
matin signatures (Mikkelsen et al., 2010), multiple long range 
interactions (Maston et al., 2006; Sanyal et al., 2012), dimeriza-
tion (Guo et al., 2010; Mendel et al., 1991), post-translational 
modifications such as phosphorylation (Hang and Stein, 2011; 
Guo et al., 2010), and cross-talk among signaling systems (Vel-
loso et al., 2006) – all of which can be species-specific – even 
subtle differences would have dramatic effects in vivo. thus, it 
is important to consider how the cumulative effects of such fun-
damental differences across the entire gene regulatory network 
may profoundly limit interspecies translatability.

4.2  Glucose biology: Protein level
Rodent and human β-cells are equipped with glucose transport-
ers and enzymes that play a key role in β-cell glucose metabo-
lism. The principal glucose transporter present in rodent β-cells 
is glucose transporter 2 (GLUT2), and greatly reduced GLUT2 
expression levels (both mRNA and protein) have been shown 
to correlate with elements of t2DM in various diabetic rodent 
models such as db/db mouse, Goto-Kakizaki rat, Zucker dia-
betic fatty rat, and streptozotocin mouse (Thorens et al., 1992; 
Orci et al., 1990; Johnson et al., 1990; De Vos et al., 1995). 
Based on such evidence, GLUT2 had been presumed to play the 
same role in the human islet; however, human islets predomi-
nantly express glucose transporters 1 (GLUT1) and 3 (GLUT3) 
(De Vos et al., 1995; McCulloch et al., 2011), and GLUT2 ex-
pression levels do not correlate with human T2DM (Ferrer et 
al., 1995). In fact, T2DM due to decreased β-cell GLUT2 or 
defects in GLUT2 may represent only a small subset of humans 
with T2DM – the well-known inactivating mutations of human 
GLUT2 are associated with a rare disease of carbohydrate me-
tabolism (Fanconi-Bickel syndrome), which results in signifi-
cant impairment of hepatic and renal glucose metabolism, but 
not defective β-cell insulin secretion (Santer et al., 1998, 1997), 
with a subset of patients displaying transient neonatal diabetes 
before the clinical manifestations of Fanconi-Bickel syndrome 
appear (Sansbury et al., 2012). In marked contrast, mice lack-
ing GLUT2 (GLUT2-null mice and mice expressing GLUT2 
antisense RNA in β-cells) display altered glucose tolerance, 
loss of first-phase insulin secretion, inverse α-to-β cell ratio, 
hyperglycemia, hypoinsulinemia, and increased plasma gluca-
gon, non-esterified fatty acids, and β-hydroxybutyrate levels. 
GLUT2 null mice die within the first 2-3 weeks of life follow-
ing severe growth retardation and impaired postnatal pancre-
atic development (Valera et al., 1994; Guillam et al., 1997). 
Biochemically, GLUT2 is a low affinity transporter (Km ~25 
mM) while GLUT1 and GLUT3 are high affinity transporters  
(Km ~1-5 mM) (Bell et al., 1993; Bouche et al., 2004). Func-
tionally, this translates into altered glucose sensing and secre-
tion such that human islets secrete more insulin at lower glu-
cose concentrations than mouse islets (Dai et al., 2012) despite 
the fact that expression levels of glucokinase (the enzyme that 
catalyzes the rate-limiting step in β-cell glycolysis) is the same 
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4.3  Glucose biology: Pathway level
Rodent-human species differences are also seen in cellular sig-
nal transduction and glucose metabolic pathways. Glucose me-
tabolism via anaplerosis and cataplerosis plays an important role 
in insulin secretion by rodent pancreatic β-cells, and metabolic 
enzymes pyruvate carboxylase and AtP citrate lyase play im-
portant roles in rodents. However, the levels and activities of the 
key anaplerotic enzymes pyruvate carboxylase and ATP citrate 
lyase are reported to be 80-90% and 60-75% lower in human 
islets compared to rodent islets, respectively (MacDonald et al., 
2011). The role of pyruvate carboxylase in insulin secretion in 
human islets is also different from rodents: human islets are less 
dependent on pyruvate carboxylation, with only 15% pyruvate 
carboxylation activity compared to that in rodents. Further-
more, glucose-stimulated human islets form more acetoacetate 
than rodent islets, and human islets also contain higher levels 
of other metabolic enzymes such as succinyl-CoA-3-ketoacid-
CoA transferase and acetoacetyl-CoA synthetase (MacDonald, 
2002). Fatty acid synthase levels in human islets are also higher 
than in rodent islets (MacDonald, 2002). Glucose-6-phosphatase 
(G6P) plays an indispensable role in rodent and human liver by 
catalyzing the final step in gluconeogenesis and glycogenoly-
sis; however, unlike murine G6P, human G6P catalytic subu-
nit gene expression is not subject to modulation by peroxisome 
proliferator activated receptor gamma coactivator-1 via HNF4a 
due to a mere 3-base-pair sequence variation (Schilling et al., 
2008). Such differences in critical glucose metabolic pathways 
between rodents and humans have fundamental implications for 
understanding the regulation of human glucose homeostasis un-
der normal and disease conditions. 

Insulin secretion is the end result of a coordinated effort by a 
host of signaling molecules from various intracellular signaling 
cascades. the secretory responsiveness characteristic of human 
perfused pancreas and perifused islets includes biphasic insulin 
secretion (a rapid robust first phase and a sustained rising sec-
ond phase) as well as time-dependent potentiation and inhibition 
of insulin secretion (Nesher and Cerasi, 2002; Grodsky, 1989; 
Eizirik et al., 1992). In marked contrast, perfused and perifused 
mouse islets lack the sustained second phase and the time-de-
pendent potentiation and inhibition responses to priming with 
high glucose. Moreover, mice also differ from rats in this regard, 
as rat islets readily display biphasic insulin release and time-de-
pendent potentiation/inhibition (Berglund, 1980, 1987; Zawalich 
and Zawalich, 1996a; Zawalich et al., 1998). This species dis-
parity in ATP-sensitive potassium (KATP) channel-independent 
second phase insulin secretion can be attributed – at least in part 
– to altered intracellular signaling pathways involving cAMP 
(Ma et al., 1995), ATP and protein kinase A (Takahashi et al., 
1999), glyceraldehyde (Lenzen, 1979), amino acids (Liu et al., 
2003), and phospholipase C/protein kinase C (Zawalich et al., 
2000, 2001, 1995; Zawalich and Zawalich, 1996b). Studies with 
humans have shown that in T2DM, the first-phase insulin secre-
tion is almost abolished and the second-phase insulin secretion 
is significantly reduced (Del Prato, 2003). Notably, insulin secre-
tion in the conscious mouse is biphasic and pulsatile, and thus 
it has been argued that the mechanism(s) generating the murine 
second phase response in vivo is lost during in vitro islet dis-

in rodents and humans (De Vos et al., 1995). These studies indi-
cate that GLUT2 does not play the same key role in the human 
pancreas as it does in rodents.

the rate-limiting step in human glucose metabolism is in-
sulin-dependent glucose uptake into skeletal muscle, which is 
facilitated by glucose transporter 4 (GLUT4) being recruited to 
the plasma membrane in clathrin-coated vesicles. In humans, 
the heavy chains of the clathrin triskelion are encoded by two 
distinct clathrin heavy chain (CHC) genes, CHC17 and CHC22 
(Kedra et al., 1996). CHC22 is highly expressed in human skel-
etal muscle, and it is associated with expanded GLUT4 com-
partments in T2DM patients (Vassilopoulos et al., 2009; Wake-
ham et al., 2005). Unlike in humans, only a pseudogene exists 
in mice (Wakeham et al., 2005; Vassilopoulos et al., 2009). In 
addition, CHC22 appears to be biochemically and functionally 
distinct with unique protein-protein interactions and transport 
properties (Wakeham et al., 2005; Brodsky, 2012). For exam-
ple, CHC22 does not bind the classic adapter proteins or Golgi-
localized, γ-ear-containing Arf-binding proteins that CHC17 
interacts with, but directly binds to the membrane cargo rec-
ognition family member sorting nexin 5 abundant in skeletal 
muscle through a coiled-coil domain absent in CHC17 (Towler 
et al., 2004a,b). GLUT4 translocation has been studied exten-
sively in mice with the goal of understanding the role of insulin-
mediated glucose uptake in T2DM, but translatability is limited 
due to species differences in the GLUT4 trafficking pathway.

In terms of pathophysiological features of human t2DM at 
the protein level, one of the most striking differences in rodents 
is the absence of islet amyloid deposits. Islet amyloid polypep-
tide (IAPP) is a 37-amino acid peptide that in humans is co-
expressed and co-secreted in a 1:1 ratio with insulin. IAPP and 
insulin genes have similar promoter elements, and IAPP tran-
scription is regulated by the same transcription factor utilized 
by insulin promoter in a glucose-dependent manner (Lukinius 
et al., 1989; Watada et al., 1996; Macfarlane et al., 2000). One 
of the primary reasons for β-cell apoptosis and decreased β-cell 
mass in human t2DM is the accumulation of extracellular oli-
gomeric fibrils of IAPP, which disrupt membrane interactions 
(cell-to-cell adherence and coupling), induce apoptosis, impair 
insulin secretion, and lead to progressive β-cell failure (Haataja 
et al., 2008; Ritzel et al., 2007). In contrast, rodent IAPP exists 
in monomeric form and does not form oligomers or amyloid de-
posits (Westermark et al., 2011); rodents, therefore, do not fully 
recapitulate this important aspect of human t2DM islet pathol-
ogy. the amino- and carboxy-terminals of IAPP display high 
homology between humans and rodents, but due to the pres-
ence of proline residues in the serine-rich region that confers 
human IAPP its amyloidogenic properties (residues 20-29, Fig. 
2), rodent IAPP is not amyloidogenic (Westermark et al., 1990). 
Many attempts have been made to create amyloidogenic islets 
in rodents by transgenic expression of human IAPP; however, 
the results were highly variable with limited similarity to human 
IAPP pathophysiology (Matveyenko and Butler, 2006). From 
pancreatic glucose sensing to skeletal muscle glucose transport 
to loss of β-cell mass, human and rodent proteins (and their bio-
logical effects) have diverged significantly to an extent that does 
not permit reliable interspecies extrapolation. 
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The trademark biological function that defines a pancreatic 
β-cell is its ability to secrete insulin in response to glucose. Re-
cent evidence obtained using human islets suggests that human 
β-cell stimulus-secretion coupling differs greatly with respect to 
ion channel composition and function. Both rodent and human 
β-cells express the voltage-gated KAtP channels, the primary 
glucose sensors that initiate β-cell stimulus-secretion coupling. 
Polymorphisms in the KAtP channel subunit genes have been 
associated with increased risk of T2DM in humans. In addition, 
loss-of-function mutations in either of the KAtP channel subu-
nits, sulfonylurea receptor type 1 (SUR1) or inwardly rectifying 
K+ channel (Kir 6.2), cause severe dysregulation of insulin se-
cretion leading to persistent hyperinsulinemic hypoglycemia of 
infancy (Denton and Jacobson, 2012). Unlike humans, SUR1-
ablated mice remain euglycemic with normal insulin secretion 
in response to feeding (Shiota et al., 2002). This is due, in part, 
to the activation of a cholinergic response that compensates for 
the severe defects in glucose-induced insulin secretion mediated 
by SUR1 (Shiota et al., 2002), but such compensation does not 
occur in humans with SUR1 inactivation. Similarly, Kir  6.2 null 
mice have no KAtP channel activity in β-cells, but show only 
mild impairment in glucose tolerance (Miki et al., 1998). It is 
instructive that genetic deletion of such genes critical for insulin 
secretion in mice does not always result in deleterious conse-
quences nor manifest the same way as in humans. 

the repertoire of other voltage-gated ion channels involved 
in stimulus-secretion coupling also differs between mice and 
humans. Human β-cells express functionally important Ca2+-
channels that are not thought to be as critical in the mouse 
β-cell (Braun et al., 2008). For example, R-type Ca2+ channels, 
which play a critical role in mouse β-cells by modulating the 
kinetics of insulin release and glucose-mediated suppression of 
glucagon secretion, are not expressed at detectable levels in hu-
man β-cells (Jing et al., 2005; Rorsman and Braun, 2013). The 
expression of voltage-gated delayed rectifier potassium chan-
nels that regulate exocytosis and delayed phase ionic current 
in humans also differs in rodents. Voltage-gated Na+ channels 
(Nav) are expressed in mouse β-cells, but there is no functional 
Na+ current at physiological membrane potential (-80 mV) due 
to voltage-dependent inactivation. In marked contrast, human 
β-cells carry voltage-gated Na+ current (via Nav1.6 isoform and 
Nav1.7) important for action potential generation and glucose-
mediated insulin secretion (Braun et al., 2008). Functional 
implications of such discoveries cannot be understated given 
the diverse roles of ion channels like Nav1.7. For example, 
Nav1.7 is involved in nociception (Dib-Hajj et al., 2013), and 
any Nav1.7 antagonists developed for use as analgesics could 
have serious implications for human patients who face potential 
impairment of insulin secretion as a side effect, an effect that 
would not be readily evident in mice since they lack functional 
β-cell Nav1.7.

the expression and function of plasma membrane receptor 
and intracellular ion channel complements facilitating voltage-
independent insulin release also differ between rodents and 
humans. extracellular AtP provides an important autocrine 
regulatory mechanism that enhances the sensitivity and respon-
siveness of the human β-cell to glucose (Jacques-Silva et al., 

sociation (Nunemaker et al., 2006). This would complicate in-
terspecies extrapolation by raising the possibility that mice may 
contain a labile signaling factor absent in humans and rats. 

Pronounced species differences in islet glucose sensitivity can 
substantially affect drug testing. this may be particularly true 
for drugs that are targeted to intracellular signaling cascades 
to improve glucose-dependent insulin secretion. For example, 
drugs targeted to G protein-coupled receptor 119 and incretins 
that increase insulin secretion via cAMP/PKA-mediated path-
ways may exert variable results in rodents. In addition, even 
subtle changes in the signal transduction network can generate 
differential effects. For example, the activation of adenosine 
monophosphate-activated protein kinase by the most widely 
prescribed anti-diabetic drug, metformin, is more potent in 
primary human hepatocytes compared to primary rodent hepa-
tocytes despite similar intracellular ratios of adenosine mono-
phosphate and adenosine triphosphate (Stephenne et al., 2011). 
Taken together, the cumulative effects of alterations in key sig-
naling molecules and their intrinsic properties within the human 
cellular milieu (further affected by post-translational modifica-
tions, subcellular localization, kinetics, feedback mechanisms, 
and cross-talk, etc.) can result in distinct signaling events in 
diverse cellular contexts that cannot be reliably extrapolated 
across the species barrier.

4.4  Glucose biology: Cellular level
Pancreatic dysfunction concomitant with a decrease in β-cell 
mass is a key feature of human T2DM, and therefore much ef-
fort has been dedicated to studying β-cell survival and repli-
cation for β-cell replacement therapy. There is ample evidence 
depicting the ability to robustly induce adult murine β-cell repli-
cation in vitro, but such replication rarely occurs in adult human 
β-cells (Butler et al., 2003; Parnaud et al., 2008). In the murine 
β-cell G1/S proteome, the E2F2 protein is abundantly expressed, 
and loss of E2F2 expression by gene knockout leads to severe 
pancreatic dysfunction (Iglesias et al., 2004). However, human 
islets lack E2F2, but contain E2F3 and E2F7 that are absent in 
murine islets (Fiaschi-Taesch et al., 2009). The cyclin family 
members involved in cell cycle progression also differ: humans 
primarily express cyclin D3 with variable amounts of cyclin D1, 
and little or no cyclin D2, but rodents express and utilize cyclin 
D2 to an extent that rodents lacking cyclin D2 develop islet hy-
poplasia, hypoinsulinemia, and diabetes (Fiaschi-Taesch et al., 
2010). Similarly, expression of cdk-6 (a protein kinase of the 
CDK family that is critical for G1 progression and G1/S transi-
tion) markedly varies between human and murine islets. Human 
β-cells express cdk-4 and cdk-6, the latter capable of promoting 
robust human β-cell proliferation, which is in marked contrast 
to murine islets that do not express cdk-6 (Fiaschi-Taesch et al., 
2010). In terms of cell survival, there are species-specific dif-
ferences in the role calcineurin plays for β-cell survival: inhi-
bition of calcineurin induces marked human β-cell apoptosis, 
but only moderates murine β-cell proliferation (Soleimanpour 
et al., 2010). The translation of β-cell survival and replication in 
mouse models to β-cell survival and islet transplantation in hu-
mans, with a different complex of cell cycle proteins and regula-
tory pathways, is poor. 
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cle-specific GLUT4 knockouts also show that lack of muscle 
GLUT4 does not impair glycemic control in mice (Fam et al., 
2012). Additionally, unlike in humans, reduced glucose uptake in 
rodents appears to result not from decreased GLUT4 levels, but 
rather from impaired GLUT4 translocation and reduced GLUT4 
availability at the cell surface (King et al., 1992; Hansen et al., 
1998). Interestingly, compared to wild type controls, knockouts 
lacking muscle-specific glycogen synthase disposed glucose 
more effectively, and had normal glucose levels and better glu-
cose tolerance (Pederson et al., 2005), further implicating the re-
liance on other organs for rodent glucose disposal. Perturbation 
of insulin signaling through tissue-specific deletion of the insulin 
receptor in muscle does not alter glucose homeostasis in mice – 
these mice display normal blood glucose levels, serum insulin 
levels, and glucose tolerance (Bruning et al., 1998). However, 
liver-specific deletion of insulin receptor causes severe insulin 
resistance with marked hyperinsulinemia, hyperglycemia, and 
glucose intolerance in mice (Michael et al., 2000). In addition, 
liver-specific deletion of insulin receptor substrate 1 and 2 also 
causes insulin resistance (Kubota et al., 2008). 

Obesity is a major risk factor for human insulin resistance 
and type 2 diabetes. Adipose tissue plays a central role in the 
regulation of obesity and metabolism by modulating the release 
of non-esterified fatty acids (increased lipolysis), glycerol, hor-
mones such as adiponectin and leptin, and pro-inflammatory 
cytokines, and other factors contributing to human insulin re-
sistance (Kahn et al., 2006). Human and rodent adipose tissue 
regulation has diverged on various fronts from adipogenesis to 
adipokine secretion. For example, a recent study has shown that 
major species differences exist in the signaling pathways which 
promote adipogenesis by modulating the master regulator of 
adipogenesis, peroxisome proliferator-activated receptor γ 
(PPARγ). Human adipogenesis appears to be critically depend-
ent on the modulation of the PPARγ axis by glucocorticoid-
dependent gene LIM domain only 3 (LMO3). However, mouse 
lMO3 does not have the same functional consequences due to 
mutations in the critical glucocorticoid induction site GRE1 in 
the mouse genome (Lindroos et al., 2013). 

Adipocyte PPARγ binding sites also vary between humans 
and rodents – there is low retention of binding sites between 
species, and the binding site specificity is also dependent on 
the context. In humans, binding retention appears to depend on 
“actual sequence conservation and chromatin context” whereas 
retention in mice is dependent more on “vicinity to highly ex-
pressed genes, co-binding with C/EBPα, and binding strength” 
(Schmidt et al., 2012). Also at variance in adipose tissue signal-
ing is the regulation of adipocyte glucose sensing and systemic 
glucose metabolism via the adipokine retinol binding protein-4 
(RBP4). Expression and regulation of adipose and circulat-
ing RBP4 markedly varies between human and mouse obesity 
(Janke et al., 2006). Taken together, species specificity – from 
adipose tissue gene expression to adipokine regulation – can af-
fect translatability from mechanistic findings to drug develop-
ment. PPAR isoforms have been the target of the thiazolidin-
edione class of anti-diabetic drugs, and the combined effect of 
these species differences may contribute to the lack of efficacy 
and the various drug toxicities seen in humans.

2010). Human β-cells evoke this response predominantly via 
ion channel-gated, AtP-selective P2x purinergic receptors, par-
ticularly P2x3 subtype (Jacques-Silva et al., 2010). In contrast, 
rodent β-cells primarily act via biochemically, pharmacologi-
cally, and functionally distinct, G-protein coupled P2Y puriner-
gic receptors (Petit et al., 1998; Farret et al., 2004; Leon et al., 
2005; Poulsen et al., 1999). Intracellular signaling via the ubiq-
uitous second messenger Ca2+ is an important aspect of β-cell 
stimulus-secretion coupling. Receptor-mediated Ca2+-signaling 
involves the release of Ca2+ from intracellular stores through 
inositol triphosphate (IP3) and ryanodine receptors (RyR), and 
there is interspecies variation in expression levels and isoforms 
(Zawalich et al., 2001; Rorsman and Braun, 2013; Zhang et al., 
2007; Johnson et al., 2004). In rodents, β-cell intracellular Ca2+ 
generates synchronized oscillations that spread throughout the 
islet (Valdeolmillos et al., 1989; Santos et al., 1991; Jonas et al., 
1998; Poulsen et al., 1999). In contrast, islet-wide synchronized 
Ca2+ oscillations do not occur in humans (Cabrera et al., 2006). 
examination of fundamental cellular activities – from human 
β-cell division to stimulus-secretion coupling to β-cell survival 
– reveals major species differences in the β-cell machinery and 
mechanisms. 

4.5  Glucose biology: Tissue level
Skeletal muscle comprises the primary site of glucose clearance 
in humans, accounting for 50%-90% of glucose uptake, mak-
ing it the primary insulin-sensitive tissue and the primary site of 
dysregulation in human peripheral insulin resistance (Shulman et 
al., 1990; DeFronzo and Tripathy, 2009; Koistinen and Zierath, 
2002; Abdul-Ghani and DeFronzo, 2010). By contrast, liver is 
the primary site of glucose clearance in rodents, with 5 to 10-fold 
higher glycogen storage in the liver in rodents versus ~10-fold 
more glycogen storage in muscle than in liver in humans (Ivy, 
1999; Kasuga et al., 2003). This has functional implications since 
various aspects of glucose regulation differ between human skel-
etal muscle and rodent liver. For example, human skeletal muscle 
glucose transport is primarily facilitated by high affinity GLUT4 
while rodent liver glucose transport is primarily facilitated by 
low affinity GLUT2. Glucose transport is the rate-limiting step 
in human skeletal muscle glucose metabolism whereas the rate-
limiting step in rodent liver is glucose phosphorylation (Petersen 
and Shulman, 2002; Ploug and Vinten, 2006). Moreover, exercise 
can greatly increase glucose uptake and glycogen synthesis in 
skeletal muscle in a manner similar to that mediated by insulin, 
but liver does not display such exercise-mediated glucose trans-
port (Jensen and Richter, 2012). 

Impaired glucose trafficking in skeletal muscle is the primary 
cause of insulin resistance and an important element for devel-
opment of T2DM in humans. Skeletal muscle tissue from human 
subjects with T2DM has significantly reduced GLUT4 expres-
sion, and real-time evaluation of molecular defects using mag-
netic resonance spectroscopy has also revealed that insulin re-
sistance in humans can result from decreased insulin-stimulated 
GLUT4 activity and subsequent glycogen synthesis (Cline et al., 
1999; DeFronzo and Tripathy, 2009; Del Prato et al., 1994). In 
contrast, rodents lacking GLUT4 (global GLUT4-null) do not 
develop hyperglycemia (Katz et al., 1995). Furthermore, mus-
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Morphological differences translate into functional differenc-
es between human and rodent islets at many levels. For exam-
ple, in human islets, α-cells appear to exert stronger influence 
on β-cells compared to rodent islets due to the higher propor-
tion of α-cells and their unstructured association with β-cells. 
In the human islet, α-cells store, exocytose, and secrete acetyl-
choline via the vesicular acetylcholine transporter under lower 
glucose concentrations, and this endogenous acetylcholine in 
turn “primes” the juxtaposed β-cells for fluctuations in glucose 
levels by amplifying β-cell-specific glucose-induced insulin 
secretion (Rodriguez-Diaz et al., 2011b). With only a small 
number of α-cells juxtaposed to β-cells, this paracrine non-
neural cholinergic activity of human islets cannot be modeled 
in rodent islets. Instead, mouse islets are densely innervated by 
cholinergic axons, and acetylcholine exerts direct neural effects 
on insulin secretion via M3 muscarinic receptors expressed on 
β-cells (Gilon and Henquin, 2001; Gautam et al., 2007). 

the cumulative effects of islet architecture and signaling ap-
pear to identify human islets as unique. Human islets have a dif-
ferent set-point for glucose sensing, with a lower threshold for 
insulin secretion (Rorsman and Braun, 2013). The magnitude of 
glucose-induced insulin secretion is much lower in human islets 
(3-fold) compared to rodent islets (30-fold) (Dai et al., 2012). 
Of note, the insulin secretory capacity differs not only between 
humans and rodents, but also among rodent species and strains 
(Lenzen, 1979). In addition to insulin secretion, glucagon se-
cretion and subsequent effects also differ among species, and 
postulations regarding “glucagonocentric” diabetes should be 
based solely on human studies, as “[important] species differ-
ences in the α-cell stimulus secretion coupling as well as in the 
relative importance of the different components of the signaling 
networks have significantly hampered our ability to propose a 
unifying hypothesis for regulation of glucagon secretion” (Gro-
mada et al., 2007). With 70-80% of β-cells juxtaposed to α-cells 
in humans, intra-islet insulin secretion prevents hypergluca-
gonemia, and unregulated α-cells hypersecrete glucagon, there-
by generating a diabetic phenotype (Unger and Cherrington, 
2012), whereas these interactions are different in rodents with 
different pancreatic cytoarchitecture (cell-to-cell interactions 
and innervation, as described above). Taken together, these 
findings indicating marked differences in islet architecture and 
function raise heretofore under-appreciated concerns regard-
ing the species specificity of glucose biology and subsequent 
translatability, especially with respect to treatment modalities 
for human t2DM. these differences may partly explain why 
many treatments shown to reverse diabetes in rodents have not 
translated to humans.

4.7  Glucose biology: Organism level
One hallmark feature of human T2DM is the progressive transi-
tion from pre-diabetic metabolic dysfunction to insulin resist-
ance and reduced β-cell compensation and failure, eventually 
leading to T2DM with overt hyperglycemia (Kahn et al., 2006). 
Due to the nature of rapid experimental induction of dysgly-
cemia, insulin resistance does not precede hyperglycemia in 
many rodent models, and overt hyperglycemia can be present 
without elevated plasma insulin or insulin resistance (Srinivas-

4.6  Glucose biology: Organ level
For decades it had been assumed that human pancreatic islet 
cytoarchitecture is similar to that in rodents. While human and 
rodent islets contain the same cell types, in rodent islets, there 
is clear segregation of different cell types characterized by pre-
dominant β-cells (70-80%) clustering in the center with a char-
acteristic “mantle-core” pattern, in which the core of β-cells is 
surrounded by a mantle of α-cells (along with other islet cell 
types, δ and γ) localized to the periphery of the islet (Baetens 
et al., 1979; Bennett et al., 1996; Ku et al., 2002). Comprehen-
sive analysis of human pancreatic islet composition by confocal 
laser scanning microscopy and multiple immunofluorescence 
labeling has shown that human islet cytoarchitecture is strik-
ingly different. Human α-cells are not discretely localized to the 
periphery, and the vast majority of human β-cells intermingle 
with all other cell types compared to the homotypic associations 
prominent in mouse β-cells (Brissova et al., 2005; Cabrera et 
al., 2006; Kim et al., 2009), other than in one study that iden-
tified some small human islets displaying mouse-like segrega-
tion (Bosco et al., 2010). The relative islet cell composition also 
varies between rodents and humans. Image analysis of human 
islet optical sections and morphometric analysis of discrete his-
tological sections have shown that human islets contain (with 
slight variations among studies) approximately 50-60% β cells, 
30-40% α cells, and 10% δ cells in contrast to >70% β cells, 
<20% α cells, and <10% δ cells in rodents (Brissova et al., 
2005; Cabrera et al., 2006). 

Islet architecture also differs with respect to vasculature and 
innervation. Human islets have a more prominent intra-islet 
vasculature with higher smooth muscle content. In contrast, 
rodent islet vasculature is primarily composed of endothelial 
tubes, with only a few arterioles containing smooth muscle cells 
(Bonner-Weir and Orci, 1982; Rodriguez-Diaz et al., 2011a). 
Islet β-cells in mice directly interact with vascular endothelial 
cells, which contain a single basement membrane. In contrast, 
human capillary endothelia have two separate sheaths of base-
ment membranes, generating altered molecular interactions be-
tween islet and endothelial cells (Otonkoski et al., 2008). 

It has long been known that rodent islets are densely inner-
vated with sympathetic, parasympathetic, and sensory nerves 
with less innervation in the exocrine pancreas (Ahren, 2000). 
In contrast, human islets display sparse innervation with only 
a few neuronal axons penetrating the islet (and only in discrete 
regions within the islet), while much denser innervation is 
present in the exocrine pancreas (Rodriguez-Diaz et al., 2011a; 
Caicedo, 2012). In mouse islets, sympathetic fibers preferen-
tially innervate α-cells while parasympathetic fibers innervate 
α- and β-cells equally. In contrast, the sympathetic axons do 
not innervate or contact human islets directly – they innervate 
contractile “vascular smooth muscle cells deep inside human 
islets” (Rodriguez-Diaz et al., 2011a). Thus, in humans, sym-
pathetic nerves regulate islet function indirectly by controlling 
blood flow or by acting on islet regions located downstream, 
whereas mouse islets are directly innervated by the autonomic 
nervous system (Rodriguez-Diaz et al., 2011a), introducing a 
different set of mechanisms to regulate islet function and subse-
quent glucose metabolism. 



Chandrasekera and PiPPin

Altex 31, 2/14 165

rodents may develop early stages of diabetic retinopathy, but 
intravitreal neovascularization leading to blindness in humans 
is not seen in any rodent model of T2DM (Robinson et al., 
2012). Instead of diabetic complications inherent in humans, 
rodents tend to develop other secondary – often lethal – con-
ditions such as ketoacidosis, growth retardation, and neonatal 
mortality, which are absent in human T2DM (Srinivasan and 
Ramarao, 2007). 

Rodents also develop unrelated pathophysiological complica-
tions that arise due to the technique of induction. For example, 
induction of t2DM using the toxic glucose analogues strepto-
zotocin and alloxan also results in extrapancreatic genotoxic 
and cytotoxic effects including disruption of the hypothalam-
ic-pituitary-gonadal axis (Szkudelski et al., 1998; Thliveris et 
al., 1984), and therefore it is often not possible to segregate the 
effects caused by pancreatic cytotoxicity versus those effects 
stemming from extrapancreatic sites. Moreover, with many 
rodent models, the presence of phenotypic features from birth 
makes it difficult to distinguish between developmental effects 
versus experimentally induced effects. this is particularly true 
for gene deletion studies, since it is often not possible to dif-
ferentiate the effects of gene deletion on development from the 
effects attributable to redundant compensatory mechanisms. 

Rodent data also vary markedly due to factors such as spe-
cies, strain, age, gender, and mode of t2DM induction. the 
common inbred mouse strains used in t2DM research dis-
play considerable strain-dependent variability in whole-body 
glucose metabolism, such as insulin secretion and action, and 
counter-regulatory responses. The impact of genetic back-
ground on glycemic control has been reported in many stud-
ies (Kulkarni et al., 2003; Almind and Kahn, 2004; Berglund 
et al., 2008), and the susceptibility to diabetes varies among 
even the most closely related strains such as C57BL/6J and 
C57BLKS/J (Mu et al., 1999). Gender differences also exist 
at the species and strain levels to the extent that in some mod-
els female disease penetrance is nil. these rodent models also 
vary in the age of disease onset, disease penetrance, disease 
severity, and duration of phenotypic manifestations – from the 
absence of the main t2DM metabolic features such as hyper-
glycemia and insulin resistance to the presence of only one 
such feature to reversion of metabolic abnormalities. the loss 
of phenotype over time also has been reported, for example, in 
the β-cell specific insulin receptor knockout models (Kulkarni 
et al., 2003). Such high variability in the most basic param-
eters of glucose regulatory mechanisms consequently yields 
data that are unreliable for humans and also for the Mus and 
Rattus lineages.

Rodent data extrapolation is further complicated by ex-
perimental challenges associated with techniques such as the 
hyperinsulinemic-euglycemic clamp used for measuring vari-
ous parameters of glucose regulation in rodents (Ayala et al., 
2006). In addition, administration of glucose via the intraperi-
toneal route averts the incretin response known to potentiate 
glucose-mediated insulin secretion in humans. even the tech-
niques utilized for pancreatic imaging cannot be compared 
directly between rodents and humans. For example, radiola-
beled tetrabenazine analogues are used for imaging human 

an and Ramarao, 2007). Most rodent models do not allow the re-
searcher to control the onset or the severity of insulin resistance, 
and the inability to accurately model human disease progression 
becomes problematic, especially when developing therapies for 
the early phase of human t2DM. Systemic glucose regulation 
is also subject to further modulation by cross-talk among par-
allel systems. For example, estrogen exerts various effects on 
skeletal muscle, liver, adipose tissue, and cells of the immune 
system; and estrogen action on the pancreas can regulate insulin 
secretion (Mauvais-Jarvis et al., 2013). Such interactions in-
troduce another level of species-specific differences, hindering 
rodent-to-human extrapolation. 

Human t2DM is associated with vascular complications, 
which start developing long before the clinical diagnosis of 
overt hyperglycemia. One of the primary limitations of rodent 
models of T2DM is that they either lack these complications 
altogether or do not mirror the human etiopathology accu-
rately. Cardiovascular complications remain the leading cause 
of morbidity and mortality in human t2DM, with accelerated 
atherosclerosis being the dominant underlying mechanism. It 
is well-known that an altered lipid profile, characterized by 
elevated total cholesterol and low-density lipoprotein (LDL) 
and decreased high-density lipoprotein (HDL), and other fac-
tors such as inflammation, oxidative stress, and insulin resist-
ance contribute to the chronic complex process of atheroscle-
rosis in humans (Van Gaal et al., 2006). However, rodents 
are resistant to atherosclerosis in general – atherosclerosis 
is typically absent or very mild unless specific atherogenic 
manipulations are enforced with diet and/or genetic modifica-
tions (Pellizzon, 2008; Ishibashi et al., 1994; Coleman et al., 
2006; Daniels et al., 2012). Rodents have highly effective lipid 
clearance and a notably different anti-atherogenic lipid profile 
where HDl is the major lipoprotein in circulation rather than 
lDl. Mouse strains differ considerably in their susceptibil-
ity to atherosclerosis, and some strains resist atherosclerosis 
even when fed atherogenic diets (Pellizzon, 2008; Galman et 
al., 2007; Ishida et al., 1991; Nishina et al., 1994; Jiao et al., 
1990; Mu et al., 1999). 

Furthermore, platelet aggregation, a major component of the 
human atherosclerotic process, is not a critical factor in rodent 
models. Notably, one of the most widely used mouse models 
of t2DM, the db/db model, which has generated more than 
2,300 publications over the last three decades (Fig. 1), does not 
readily develop atherosclerotic lesions despite obesity, hyper-
lipidemia, and cardiomyopathy (Belke et al., 2004). The db/db 
mouse develops atherosclerosis only on a highly atherogenic 
diet or when crossed into a vulnerable genetic background such 
as apolipoprotein E-deficient mice (Wendt et al., 2006). How-
ever, such manipulations do not follow the same etiology as in 
humans. In addition, the method of t2DM induction in rodents 
can often induce irrelevant cardiovascular abnormalities such 
as decreased blood pressure and resting bradycardia observed 
in streptozotocin-induced rodent T2DM models (Hicks et al., 
1998). In terms of other diabetic complications, most rodent 
models lack overt degenerative pathological alterations seen in 
human diabetic neuropathy, which include segmental demyeli-
nation and axon loss (Sharma and Thomas, 1974). Similarly, 
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epigenetic factors that mediate gene-environment interac-
tions are also important. There are links among diet/nutrients, 
obesity, energy metabolism, physical activity, and gene expres-
sion and regulation such as DNA methylation and histone modi-
fications. For example, genetic background (family history of 
T2DM) and exercise can alter expression and DNA methylation 
of several genes involved in skeletal muscle glucose regulation 
(Nitert et al., 2012). Adding another layer of complication is 
the recent identification of the effects of regulatory small RNAs 
and micro RNAs on gene regulation and T2DM complications 
(Kantharidis et al., 2011). Though humans and rodents have ap-
proximately the same number of genes, it is in large part the 
differences in gene structure and regulation that give rise to two 
completely different organisms (Dunham et al., 2012). It is also 
noteworthy that lab animals fed ad libitum are inbred for many 
generations and thus many genes and phenotypes are enriched 
for certain traits that may not be relevant to t2DM pathophysi-
ology even for that species or strain. therefore, data obtained 
from rodents cannot be extrapolated directly to humans with 
respect to genetic and epigenetic influences.

Also, rodents housed in controlled environments without 
exposure to toxins, environmental hazards, and other factors 
causing cellular stress in humans do not recapitulate the human 
condition (Murea et al., 2012). The standard laboratory envi-
ronment also has negative impacts on rodents. Mice are gen-
erally housed at 18-22°C, which is well below their preferred 
and critical thermoneutrality temperature of ~30°C (Gaskill et 
al., 2012). These suboptimal temperatures exert chronic ther-
mal stress, and rodents try to maintain thermoneutrality by in-
creasing metabolism via increased food intake by as much as 
50% (Lodhi and Semenkovich, 2009; Cannon and Nedergaard, 
2011). Even standard control rodents used in research do not 
serve as appropriate controls since they are “metabolically mor-
bid…sedentary, obese, glucose intolerant, and on a trajectory 
to premature death” (Martin et al., 2010). These factors have 
a tremendous potential to skew interspecies extrapolation, par-
ticularly in obesity, metabolism, and T2DM fields. 

Taken together, data obtained from rodents are affected by 
many different factors ranging from gene structure to gene ex-
pression, organ function to environment. Despite the evolution-
arily conserved genes and biochemical pathways humans may 
have in common with rodents, the cumulative differences and 
overall integrative physiological processes which account for 
glucose regulation are markedly different. 

5  T2DM: Bridging the translational gap by 
“humanizing” research

Despite the wealth of knowledge regarding mechanisms of glu-
cose regulation in rodents, only a limited number of anti-dia-
betic drugs are currently available for humans, most of which 
have little impact on disease progression and outcomes. erro-
neous extrapolations from animal models have resulted in poor 
translational efficacy in the development of effective pharma-
ceuticals. Perhaps more concerning are serious adverse effects 
associated with widely used t2DM drugs. thiazolidinedione 

β-cell mass, as these ligands selectively bind to the vesicular 
monoamine transporter 2 (VMAT2) abundantly expressed 
in human pancreas, but absent in rodent endocrine pancreas 
(Schafer et al., 2013). 

4.8  Glucose biology: Population and  
environment level
It is axiomatic that various environmental factors influence 
human t2DM development and predisposition. In general, 
lifestyle choices such as diet and physical activity are super-
imposed on genetic predisposition and other risk factors. The 
effect of high-fat diet has been studied extensively in various 
rodent models of t2DM, but the data have been highly vari-
able. Most rodents tend to become obese on a high fat diet, but 
there has been considerable variability in weight gain, glucose 
tolerance, insulin resistance, serum triglycerides, and various 
other parameters, even among strains (Buettner et al., 2007; 
Rossmeisl et al., 2003). In addition, regardless of dietary con-
tent, some strains have higher fasting plasma glucose levels 
and lower fasting plasma insulin levels (Andrikopoulos et al., 
2005). Changes in dietary composition (fatty acids, carbohy-
drates, proteins) has also led to considerable variability in ro-
dent studies with some strains being more susceptible to weight 
gain on a high-fat diet and others on a high-carbohydrate diet 
(Smith et al., 1997; Warden and Fisler, 2008; Buettner et al., 
2006). Some mouse strains are altogether resistant to high-fat 
diet-induced pathological changes (West et al., 1992). Dietary 
modifications are often combined with other manipulations, 
such as gene modifications and chemical inductions, further 
exacerbating rodent-model variability and correlation with hu-
man t2DM pathophysiology. It is clear that for rodents it is not 
possible to define either an “ideal” high-fat diet or the meta-
bolic perturbations based on dietary composition. Conversely, 
acute and long-term human studies yield species-specific data 
indicating that improper diet and sedentary lifestyle contribute 
to the human metabolic syndrome and T2DM (Wang et al., 
2013; Pan et al., 1997; Bienso et al., 2012). 

Genetic predisposition is also a risk factor contributing 
to human T2DM. Human gene linkage analysis, candidate 
gene approaches, and genome-wide association studies have 
yielded several single nucleotide polymorphisms (SNP) pos-
sibly related to T2DM risk, but they vary greatly among dif-
ferent populations and may not be reproducible or individually 
significant (Amato et al., 2009). Using information obtained 
from human linkage analysis to generate transgenic animals 
has typically not yielded results relevant to humans (Harries et 
al., 2009). It is evident that no single gene is responsible for a 
particular phenotype. Rather, the collective actions of multiple 
genes contribute to the overall pathogenesis of human t2DM. 
It is interesting that the two most commonly studied genetic-
derived rodent models of T2DM (ob/ob and db/db), with more 
than 4,500 publications during the last three decades (Fig. 1), 
are the models with leptin and leptin receptor mutations. How-
ever, leptin or leptin receptor deficiency is rarely associated 
with human T2DM (Gibson et al., 2004), and it is difficult to 
derive genetic information relevant to human disease etio-
pathogenesis from such models. 
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lated primary cells can be used immediately for acute assays 
or cultured as appropriate for chronic studies. Many aspects of 
human β-cell function have already been studied in this manner, 
as discussed in preceding sections. Using co-culture systems 
with media-exchange perfusions, interactions among multiple 
cell types as well as paracrine interactions can be assessed using 
techniques similar to the “Quasi-Vivo® system” 2. events such 
as paracrine signaling can also be detected in real time using 
biosensor cells in the vicinity of isolated human islets (Rodrigu-
ez-Diaz et al., 2012). Minimally invasive techniques involving 
phlebotomy and muscle biopsies can be utilized for various bio-
chemical and systemic regulation analyses (Chavez et al., 2009; 
Zierath et al., 2000), and gene-silencing studies can be extended 
to human skeletal muscle samples (Austin et al., 2008; Bouzakri 
and Zierath, 2007). 

the use of human organs ex vivo facilitates the integration of 
cellular data to the organ level. For example, explanted hearts 
from human patients have been utilized by the langendorff 
method to examine electrical activity and contractility, and 
these data have shown divergence from data obtained in mice 
(Nanthakumar et al., 2007; Fedorov et al., 2011). Sophisticat-
ed organ culture systems like the IdMOC (integrated discrete 
multiple organ co-culture) allow the researcher to mimic the 
whole-body systemic interactions affecting various organs as 
well as paracrine interactions (Li, 2009). Emerging tools such 
as the “organ-on-a-chip” technology can be utilized for further 
organ-based analyses (disease modeling and drug testing), and 
will greatly reduce the reliance on animal-based research in the 
future (Huh et al., 2012; Mowatt, 2012b). Future improvements 
on such technologies to include “multiple organs-on-a-chip” 
and “human-on-a-chip” (Mowatt, 2012a) will further facilitate 
human-based data acquisition. 

Whole-animal studies can be done with human subjects us-
ing noninvasive or minimally invasive techniques. Positron 
emission tomography (PET), magnetic resonance imaging 
(MRI), functional MRI, and advanced ultrasound techniques 
have emerged as useful noninvasive research methods in recent 
years. For example, 18F-FDG (fluorodeoxyglucose) has been 
used successfully with Pet to study how insulin stimulates 
glucose uptake in the human liver (Bertoldo et al., 2006; Iozzo 
et al., 2003; Roden et al., 2001). The ability to monitor glucose 
and insulin real-time with advanced β-cell imaging techniques 
offers valuable insights into human glucose biology (Kilim-
nik et al., 2011; Ahlgren and Kostromina, 2011). Human epi-
demiological studies have shown that it is possible to obtain 
clues to pathological complications in diabetes, for example 
by measuring retinal vascular caliber from photographs of hu-
man retinas (Robinson et al., 2012). Human population studies 
will likely prove invaluable for identifying T2DM susceptibil-
ity genes, for drug testing, and for characterization of other 
aspects of t2DM such as environmental and lifestyle factors. 
evaluation of epigenetic interactions in glucose regulation can 
also be studied in T2DM patients (Yang et al., 2012; Volkmar 
et al., 2012).

drugs such as troglitazone, pioglitazone, and rosiglitazone have 
caused liver disease, myocardial infarctions, and heart failure 
(Scheen, 2001; Smith, 2003; Taylor and Hobbs, 2009; Nissen 
and Wolski, 2010). The dipeptidyl peptidase-4 (DPP-4) inhibi-
tor sitagliptin and glucagon-like peptide-1 (GLP-1) mimetics 
exenatide and liraglutide have been suggested to increase risks 
for pancreatitis and pancreatic cancer (Elashoff et al., 2011; 
Butler et al., 2013). These drugs tested safe and effective in ro-
dents, but deleterious consequences resulted in humans. Iden-
tifying drug targets and disease mechanisms in rodent models 
has often prompted researchers to develop treatments based on 
those optimistic findings, but this may produce effective drugs 
for humans only if the same targets, mechanisms, and effects 
are at work in the human disease. Regardless of the method 
used to induce T2DM-like phenotypes in rodents, it is evident 
that immutable differences at the molecular and physiological 
levels of glucose regulation in rodents and humans severely 
restrict reliable translation. therefore, future research efforts 
should focus on increasing the utility of already available meth-
ods and the development of new technologies that are more 
human-based and directly human-relevant. A detailed discus-
sion of this topic is beyond the scope of this review, but a brief 
discussion follows. 

Human-based data can be acquired at various levels ranging 
from in vitro and in vivo technologies to population studies. In 
vitro technologies utilizing human heterologous cell lines (e.g., 
transformed cell lines and human mesenchymal stem cells), 
human primary cells and tissues (e.g., from biopsies, surger-
ies, cadavers), and explanted or donated human organs can 
be used to study various aspects of t2DM ranging from gene 
expression to organ function. Functional heterologous human 
β-cell lines have not been available to researchers to date, but 
a robust novel technology involving targeted oncogenesis in 
human fetal tissue holds promise for making functional β-cell 
lines as well as other human cell lines from cell types for which 
cell-specific promoters are readily available (Ravassard et al., 
2011). With respect to primary cells, it is important to utilize 
human primary cells since physiological differences between 
rodent and human primary cells can interfere with signal trans-
duction and drug responses, as has been reported for primary 
hepatocytes (Kotokorpi et al., 2007). Using these human cells 
and tissues, molecular factors involved in signal transduction 
can be identified with high-throughput microarray techniques 
(Mei et al., 2010) and signaling pathway protein arrays. Human 
islets cultured for up to 7 days have been used successfully for 
high-throughput drug screening (Walpita et al., 2012). Integrat-
ing data from multiple sources such as high-density SNP geno-
typing, microarray data, proteomic and metabolomic data will 
prove especially useful. 

Organotypic 3D cell culture techniques can be adapted to as-
sess biological processes in an environment more consistent 
with the in vivo environment. For example, upcyte® Hepatocyte 
3D Culture System1 offers an environment that mimics the in 
vivo cellular architecture of the liver (Barrila et al., 2010). Iso-

1 http://www.medicyte.com/productsservices/human-upcyte-hepatocytes/3d-cell-culture-kit.html
2 http://kirkstall.org/index.php/quasi-vivo-system/

http://www.medicyte.com/productsservices/human-upcyte-hepatocytes/3d-cell-culture-kit.html
http://www.medicyte.com/productsservices/human-upcyte-hepatocytes/3d-cell-culture-kit.html
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that can greatly improve bench-to-bedside success. Decades of 
research have made it clear why a priori application of rodent 
data to humans is inappropriate and why human-based data 
must go from being anecdotal to systematic frontline evidence. 
therefore, scientists and funding agencies should prioritize hu-
man-based strategies to study human t2DM characteristics and 
therapeutic options. this is the clear path to deal with the global 
epidemic of t2DM.
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