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Summary
Since March 2013, animal use for cosmetics testing for the European market has been banned. This requires a renewed view on 
risk assessment in this field. However, in other fields as well, traditional animal experimentation does not always satisfy require-
ments in safety testing, as the need for human-relevant information is ever increasing. A general strategy for animal-free test 
approaches was outlined by the US National Research Council’s vision document for Toxicity Testing in the 21st Century in 2007. 
It is now possible to provide a more defined roadmap on how to implement this vision for the four principal areas of systemic 
toxicity evaluation: repeat dose organ toxicity, 
carcinogenicity, reproductive toxicity and allergy 
induction (skin sensitization), as well as for the 
evaluation of toxicant metabolism (toxicokinetics) 
(Fig. 1). CAAT-Europe assembled experts from 
Europe, America and Asia to design a scientific 
roadmap for future risk assessment approaches 
and the outcome was then further discussed and 
refined in two consensus meetings with over 200 
stakeholders. The key recommendations include: 
focusing on improving existing methods rather 
than favoring de novo design; combining hazard 
testing with toxicokinetics predictions; develop-
ing integrated test strategies; incorporating new 
high content endpoints to classical assays; evolv- Fig. 1: The five areas of systemic toxicity testing
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1  Introduction and background

the discussion leading to this summary report started with the 
7th Amendment to the Cosmetics Directive 76/768/eeC1, which 
called for a complete ban of testing on vertebrate animals for the 
toxicological characterization of cosmetics ingredients in 2013. 
the european Commission asked experts to evaluate the avail-
ability of alternative non-animal methods. their conclusion that 
alternative methods would not be available during the next 10 
years (Adler et al., 2011) met with some criticism (taylor et al., 
2011), but was mostly endorsed by an independent expert group 
invited by CAAt also including specialists from Japan and the 
USA (Hartung et al., 2011). They also noted that significant ad-

vances had been made in the time between the publication of the 
Adler Report and the evaluation by the international group of ex-
perts. the next step, i.e., assembling experts to create a perspec-
tive for the future, was initiated by CAAt-europe in a series of 
commissioned white papers on sensitization, repeated dose organ 
toxicity, toxicokinetics, carcinogenicity and reproductive toxic-
ity. Importantly, this work addressed a broad range of chemical 
testing, including also the fields of drugs, pesticides and indus-
trial chemicals in addition to cosmetics ingredients. A workshop 
with 35 experts discussed these white papers. this activity re-
sulted in the extensive report A roadmap for the development of 
alternative (non-animal) methods for systemic toxicity testing 
(Basketter et al., 2012). to involve all potential stakeholders, this 

1 http://ec.europa.eu/consumers/sectors/cosmetics/files/doc/antest/(2)_executive_summary_en.pdf

Fig. 2  Timeline of events leading to this public expert consultation report 
The 7th amendment of the European Cosmetics Directive required the phasing out of animal testing to be completed by 2013. The 
European Commission evaluated the availability of non-animal methods and the outcome was published (Adler et al., 2011). The 
conclusions of that report were confirmed by independent experts (Hartung et al., 2011). In order to outline a roadmap for further 
development of non-animal methods for addressing systemic toxicity, an expert consortium was convened in a series of CAAT-Europe 
workshops to elaborate on the issue. As a result, an extensive report on the roadmap for non-animal methods for systemic toxicity testing 
was published (Basketter et al., 2012) and presented for a public expert consultation in 2012 in Brussels and in 2013 in Washington at an 
FDA-hosted event. The present report summarizes the recommendations resulting from the public expert consultation in which over  
200 experts from academia, industry and regulatory authorities were involved. Grey boxes refer to actions taken by CAAT/CAAT-Europe. 

ing test validation procedures; promoting collaboration and data-sharing of different industrial sectors; integrating new disci-
plines, such as systems biology and high throughput screening; and involving regulators early on in the test development process. 
A focus on data quality, combined with increased attention to the scientific background of a test method, will be important drivers. 
Information from each test system should be mapped along adverse outcome pathways. Finally, quantitative information on all 
factors and key events will be fed into systems biology models that allow a probabilistic risk assessment with flexible adaptation 
to exposure scenarios and individual risk factors. 

Keywords: safety testing, animal-free testing, systemic toxicity, adverse outcome pathways 
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cancer tests. These results are unlikely to be relevant at the low 
doses of human exposure.” (Ames and Gold, 2000). Many of the 
attendees expressed the opinion that widespread knowledge on 
the limited value of certain animal studies frequently contrib-
utes to the decision by authorities to waive testing.

the lack of predictivity of animal models is particularly ap-
parent from the field of drug development (Leist and Hartung, 
2013). Only 8% of drugs entering clinical phase I (first human 
dose) gain approval by authorities and half of them fail in phase 
III4. US Health and Human Services Secretary Mike leavitt 
commented that “currently, nine out of ten experimental drugs 
fail in clinical studies because we cannot accurately predict 
how they will behave in people based on laboratory and animal 
studies.”5

the conclusions are easily drawn: We need human-predic-
tive, rapid and economical methods to evaluate whether or not a 
compound, no matter if chemical, drug or cosmetic ingredient, 
is safe for intended human use. 

3  Future safety science and pathways of toxicity

A key step in the paradigm shift in toxicology, as far as regula-
tory authorities are concerned, was the 2007 US National Re-
search Council report Toxicity Testing in the 21st Century – a 
Vision and a Strategy (NRC, 2007; leist et al., 2008a). It pro-
moted the idea that the number of ways that a chemical or drug 
could disturb a cell is finite and can therefore be identified by 
appropriate screening methods. Quantitative information on 
the concentration-dependence of such disturbances can be used 
to predict the overall network of cellular regulatory reactions 

roadmap was presented in March 2012 in Brussels2 by several 
experts in front of about 200 stakeholders from governmental 
organizations, academia, industry and NGOs from all over the 
world (Fig. 2). A second workshop, Scientific roadmap for the 
future of animal-free systemic toxicity testing, similar in size and 
scope, was organized in Washington at the FDA in May 2013 to 
give updates on the Basketter report and scientific advances in 
the fields3. 

Each of the lectures on the five major fields still requiring 
better non-animal safety testing methods (Fig. 1) was followed 
by one hour of intensive discussion to consolidate or improve 
the suggested strategies. Here we report the final outcome. This 
roadmap is expected to pave the way for a new toxicology that 
can better predict the effect of chemicals on humans, using few-
er or even no vertebrate animals.

2  Animal models

A successful strategy to replace animal testing must take its 
starting point from the analysis of the current technology. the 
weaknesses of animal testing could then be avoided by the new 
approach (Fig. 3). It must be noted that rational comparisons are 
made difficult by the fact that almost all of the currently used 
animal models have never been formally validated. the ration-
ale of their use is therefore not based on scientific data (Hartung 
and leist, 2008). 

Some of the problems related to animal models derive from 
the high doses that are tested and the multiplicity of endpoints 
that are measured. experts claim, that “Half of all chemicals, 
whether natural or synthetic, are positive in high-dose rodent 

2 The forum was co-organized by Center for Alternatives to Animal testing (CAAT), Cosmetics Europe, Doerenkamp-Zbinden Foundation, European 
Chemical Industry Council (CEFIC), European Consensus Platform for Alternatives (ECOPA), European Society for Alternatives to Animal Testing 
(EUSAAT), European Society for Toxicology in vitro (ESTIV), US EPA ToxCastTM, Humane Society International (HSI), Institute for In-vitro Sciences 
(IIVS) and In-vitro Testing Industrial Platform (IVTIP).
3 The forum was co-organized by Agilent Technologies, American Cleaning Institute (ACI), Animal Research & Development Foundation (ARDF), 
American Society for Cellular and Computational Toxicology (ASCCT), Center for Alternatives to Animal testing (CAAT), CropLife Canada, CropLife 
America, FDA Center for Food Safety and Advanced Nutrition (CFSAN), Grocery Manufacturer Association (GMA), Human Toxicology Project 
Consortium, Humane Society of the United States (HSUS), Institute for Invitro Sciences (IIVS), National Institute for Environmental Health Sciences 
(NIEHS), People for the ethical Treatment of Animals (PeTA) and The Hamner Institute.
4 http://www.the-scientist.com/?articles.view/articleNo/15910/title/More-Compounds-Failing-Phase-I/
5 http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2006/ucm108576.htm

Fig. 3: Problems with animal experiments
To assess the hazard posed by substances 
humans are exposed to, all available 
approaches need to be evaluated for 
their usefulness. The present system of 
animal testing needs critical evaluation 
of its predictive power for human safety. 
The limitations of animal testing, which is 
often considered the “gold” standard, may 
compromise human safety and pose an 
economic threat. Under such conditions, its 
ethical acceptability is also doubtful. 

http://www.the-scientist.com/?articles.view/articleNo/15910/title/More-Compounds-Failing-Phase-I/
http://www.the-scientist.com/?articles.view/articleNo/15910/title/More-Compounds-Failing-Phase-I/
http://www.the-scientist.com/?articles.view/articleNo/15910/title/More-Compounds-Failing-Phase-I/
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2006/ucm108576.htm
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low for more rational and science-based regulatory decisions by 
assembling information from a tailored set of tests adapted to 
different types of questions and scenarios of exposure and risk 
assessment (Fig. 5). 

4  General forward strategies

While discussing the five specific toxicological domains, the ex-
perts identified issues relevant to all areas of in vitro methods. 
Joint knowledge management and sharing of expertise between 
different sectors, stakeholders and application domains were 
identified as important drivers for accelerated progress, in addi-
tion to accelerated test establishment and validation, and better 
use of computational toxicology methods (Fig. 6).

Sharing of data would hopefully lead to the creation of a hu-
man safety database, bigger and more complete than existing 
ones (e.g. OPeNtOx, ePA, tOxBANC, IMI activities). Most 
importantly, it would be more accessible and should be tailored 
for in vitro-in vivo comparisons as well as data mining by non-
specialists in bioinformatics. the focus would not be on data 
collection as such, but on the accessory information linked to 
the primary outcome data as far as mechanisms of toxicity are 
concerned. As there are major hurdles (e.g., intellectual property 
rights and industrial competitiveness issues) to be overcome, it 
is clear that substantial incentives must be granted to encourage 
industry to share their proprietary data (Fig. 7). 

(Hartung et al., 2012; Blaauboer et al., 2012). Deviations from 
normal at important control points could be related to adverse 
effects of chemicals and have been termed pathways of toxic-
ity (Pot) (Kleensang et al., 2014). Individual susceptibilities to 
toxicant actions are determined by genetic heterogeneity of the 
human population (G), but also by additional environmental fac-
tors (e) (Fig. 4). the combination of high throughput screening 
assays with traditional cellular assays has been supplemented 
by in vitro-in vivo mathematical extrapolations, systems biology 
(computer models of cell regulation) and other approaches by 
many leading academic and governmental organizations to pro-
vide integrated testing strategies (leist et al., 2012a,b; Sturla et 
al., 2014; Hartung et al., 2013b; Kavlock et al., 2012; Andersen 
et al., 2011; Hartung and McBride, 2011; Bouhifd et al., 2014; 
Rossini and Hartung, 2012).

New approaches to safety testing require new strategies to 
stringent but flexible evaluation of the suitability and perform-
ance of methods. Methods suggested by the evidence-based 
toxicology Collaboration (european and US branches, http://
www.ebtox.com) will be helpful in this process (Stephens et 
al., 2013). The risk classification itself is also likely to undergo 
fundamental changes. At present, using a very limited number 
of animal tests, a chemical is classified as toxic or non-toxic 
(deterministic risk assessment) at a given exposure level. the 
much richer information provided by the new approaches and 
the progress of safety sciences could form a basis for proba-
bilistic risk assessment (Paparella et al., 2013). this would al-

Fig. 4: Illustration of the concept of Pathways of Toxicity (PoT)
PoT are cellular pathways of metabolism and regulation. Interference with them can lead either to adaptive or adverse (maladaptive) 
responses. Prediction of the outcome requires computational modeling. A toxicant challenge may trigger different responses at different 
concentrations, leading to various reactions in the cell. A low target site concentration (corresponding to a “no observed effect level” 
(NOEL) and being much lower than the “no observed adverse effect level” (NOAEL)) may not affect the normal biological function. A 
medium concentration (in the range of the NOAEL) may induce an adaptive stress. Whether this results in a return to normal function or to 
an altered biological state depends on genetic and environmental factors and their interaction (G x E). An even higher concentration (much 
larger than NOAEL or NOEL) might either lead to an adaptive stress response or a complete loss of function. Here, G x E factors also play 
a key role in the decision whether a compound leads to cell injury, morbidity and mortality.

http://www.ebtox.com
http://www.ebtox.com
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None of the future challenges in the field of in vitro toxicol-
ogy can be addressed by individual test systems. the solution 
will rather lie in the construction of batteries of tests to be com-
bined in integrated testing strategies (ItS). this will need to 
be considered right from the conception of a test, throughout 
its development and especially during the evaluation of its per-
formance. the latter evaluation needs to consider the test alone, 
but also in the context of the added value it brings to a test 
battery. More research and experimentation is required on how 
to build ITS. One example of a flexible, yet fully quantitative 
approach, is the Bayesian network (McDowell and Jaworska, 

Fig. 6: General points to consider when moving forward 
towards new approaches for systemic toxicity testing
While discussing solutions for the five toxicological endpoints 
(carcinogenicity, reproductive toxicity, repeated dose organ 
toxicity, sensitization and toxicokinetics), the experts agreed 
that several suggestions apply equally to all five areas under 
investigation. These general suggestions are summarized here. Fig. 7: Creation of a high quality database for relating in vivo 

and in vitro information 
The key players (pharmaceutical, chemical and cosmetics industry, 
basic research and regulators) share common goals that are of high 
value to them. The benefit of working together should outweigh 
disadvantages (opening of proprietary databases). This would allow 
the generation of a large, high quality database of in vitro toxicity 
data. It should be publicly available, include rich data that informs 
on the mode of action of compounds and allows for in vitro – in vivo 
correlations. It should also be quality controlled and suitable for case 
studies. This can be achieved by joint projects and the common use 
of legacy data from hitherto proprietary in-house databases. The 
collection of human data by micro-dosing, from clinical trials and 
from epidemiological studies plays a major role. 

Fig. 5: Vision of a smooth transition from current  
to future toxicology in safety science
It is envisaged that the types of test systems employed will 
change over the time course of the establishment of a new 
safety science. At present, complex test systems that are 
specific for organ functions and developmental stages are 
preferentially used. Only few programs use simple assays of 
elementary biochemical and cellular function (e.g., ToxcCastTM 
Program). Over time, more and more critical biomarkers of 
toxicity may be identified by the application of HCS (high-
content screening) and omics technologies to the complex 
systems, and simple test systems may suffice to measure key 
processes (Rossini and Hartung, 2012). Case studies, e.g., 
from PBPK (physiologically based pharmacokinetic modeling) 
and skin sensitization fields, could be used as learning models 
for the transition. The principles of evidence-based toxicology 
and the resulting quality control will lead to an accelerated 
method development and validation. Over time, the goal is 
to shift from the present deterministic risk classification to a 
probabilistic risk assessment. 
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2002; Jaworska and Hoffmann, 2010; Jaworska et al., 2010, 
2011), which has been applied successfully in the area of skin 
sensitization (Fig. 8). Input of the field of machine-learning is 
envisaged to be very important for optimal strategic designs of 
ItS (Hartung et al., 2013b).

5  Strategies to improve test systems

Alternative in vitro methods have been developed for all toxi-
cological questions, including even the most complex fields, 
ranging from developmental neurotoxicity (DNt) to xenobiotic 
metabolism (Adler et al., 2011; Basketter et al., 2012; leist et 
al., 2012a, 2008b; van thriel et al., 2012; Smirnova et al., 2014; 
taylor et al., 2011). Many of these methods should be formally 
validated for immediate use, or they could form the basis for 
accelerated further development. Optimization of existing sys-
tems is an important part of the strategy to accelerate the imple-
mentation of a mostly animal-free safety science, in addition to 
the more time demanding development of entirely new methods 
(Fig. 9). One specific way to improve available tests is the in-
corporation of highly information-rich endpoints provided by 

Fig. 9: Strategies to improve in vitro test systems
Test systems that already have been developed can still improve  
in quality and robustness to arrive relatively quickly at  
predictive test systems fit for regulatory use. A list of features to  
be considered has been compiled here. 

Fig. 10: Overview of different omics technologies that 
can inform on chemicals’ adverse outcome pathways and 
underlying modes of action
Omics technologies provide data-rich endpoints. The biological 
information flow in a cell leads from gene sequences (the code) 
via RNA (the messages) to enzymes and other functional proteins 
(the tools). Within this infrastructure small molecule metabolites 
may be regarded as the goods that are produced and traded. 
They comprise energy substrates, building blocks and signaling 
messengers. As there are feedback loops between all levels, 
the different omics technologies address these four organization 
levels. The disturbance of a cell by chemicals may be measured 
by any single technique. Combinations of more than one approach 
lead to a better prediction of the true human situation.

Fig. 8: Example for the use of Bayesian networks in the 
establishment of integrated testing strategies 
LLNA (local lymph node assay) potency prediction is used here as 
an example from the area of skin sensitization. Information from 
different assays (circles) is fed into the network. The dimension of 
the circles represents mutual information values; the length of the 
arrows has no mathematical correlation. For instance, information 
can be obtained on how the in vivo outcome (LLNA: local lymph 
node assay) is predicted by physicochemical compound properties 
(such as molecular weight or lipophilicity (Kow)), biological assays 
(e.g., GARD assay or dendritic cell assay) and peptide reactivity 
measures (DPRA: direct peptide reactivity assay). The advantage 
of the approach is that it can be coupled to other networks or other 
assays, as they are desired and become available. The original 
paper (Jaworska and Hoffmann, 2010) contains all the details on 
the background.
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eral mechanisms of sensitization are well-defined. There are 
three well-developed animal models (Buehler Guinea Pig 
test, Guinea Pig Maximization test (GPMt) and Mouse lo-
cal lymph Node Assay (llNA)) currently used to identify 
chemicals with toxic potential. the llNA, which is already 
a step towards refinement and reduction of the use of animals, 
is the preferred method for safety assessment as it provides 
a quantitative value (the concentration of the chemical which 
causes a threshold positive response (eC3)) that can determine 
the potency of the sensitizer. 

Already over a dozen different in vitro tests to identify sen-
sitizers have been submitted to the european Union Reference 
laboratory for Alternatives to Animal testing (eURl eCVAM). 
Currently, two of these are validated for risk assessment. these 
are the direct peptide reactivity assay (DPRA), based on the 
chemical understanding and correlation with sensitization, and 
the human cell line activation test (h-ClAt), based on the ac-
tivation of dendritic-like cells (Bauch et al., 2011; Sakaguchi 
et al., 2006; Ashikaga et al., 2010). the KeratinoSense™ luci-
ferase-reporter gene model (based on the anti-oxidant response 
element in the HaCat keratinocyte cell line) (Natsch, 2010; An-
dreas et al., 2011) has already been validated by Givaudan and 
is accepted by OeCD. Integrated testing strategies (ItS) will be 

omics technologies. Where classical methods measure only one, 
or few, endpoints (e.g., metabolites or gene expression levels), 
the new approaches can yield thousands of data points simulta-
neously, and provide information on a genome-wide scale (Fig. 
10) and, thus, allow insights into the reaction of a network.

6  Specific approaches for the five toxicological 
endpoints still lacking validated replacement 
methods

A detailed strategy has been elaborated for each endpoint and 
described in detail (Basketter et al., 2012). the consensus meet-
ing of the roadmap initiative highlighted specific points for im-
mediate attention and action:

6.1  Skin Sensitization 
Although the sensitization process is a disease-free state, sub-
sequent exposures can lead to allergic contact dermatitis, the 
most common adverse effect of chemicals on human health. 
One in 5 adults suffers contact allergy to one chemical or an-
other (Peiser et al., 2012). this area differs from others as a 
large amount of human data is available. Moreover, the gen-

Fig. 11: Example for the concept of adverse outcome pathways (AOPs) from the area of skin allergy
The general scheme of an AOP is illustrated in the upper panel. The AOP provides a mechanistic link between a chemical structure and 
the response of the organism to the chemical. At increasing levels of complexity, the xenobiotic’s action is assumed to be started by a 
molecular initiating event, followed by cellular and organ responses that eventually explain the effect on the organism. The middle panel 
gives an example by depicting the events leading to skin sensitization. Understanding the underlying pathophysiology is necessary to 
create a set of in vitro models for all key events. The lower panel shows an example of a specific AOP for skin sensitization. Key  
event 1 corresponds to the molecular initiating event. Further key events are shown and each of them may be modeled in vitro. 
Combination of such in vitro tests in an integrated strategy (ITS) would allow comprehensive predictions for unknown xenobiotics. 
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– Many other areas of toxicology can follow skin sensitization 
as a good example where a detailed understanding of mecha-
nisms can lead to the development of specific assays needed 
to identify compound toxicity.

– Computational models based on quantitative structure-activi-
ty relationships (QSARs) provide promising tools to identify 
sensitizers, as the toxicity of the chemical is implicit in its 
structure. There have been major advances in QSAR models, 
although studies use data from the llNA rather than human 
data and have difficulties in obtaining accuracy in models for 
“moderate” sensitizers (li et al., 2007).

6.2  Repeated dose toxicity
Repeated dose testing (RDt) consists in the evaluation of a 
chemical’s potential to cause chronic toxicity and organ-specific 
toxicities. Classically, tests for RDt are based on 4 (sub-acute 
toxicity), 13 (sub-chronic toxicity) and 26-102 (chronic toxic-
ity) week rodent and non-rodent studies. toxicity occurs after a 
chemical is absorbed into the general circulation. there is great 
concern about the relevance of these studies performed in ani-
mals for predicting human toxicity (Basketter et al., 2012; Chen 
et al., 2014; Hengstler et al., 1999; Olson et al., 2000). Differ-
ent organizations (FDA, ePA, eMeA) and initiatives (ReACH, 
tSCA and the eU Cosmetic Directive) are pushing in vitro 
methods in the chemical toxicity evaluation process. 

RDT includes chronic adverse effects on major organs. On 
the one hand, the assessment of RDt requires lengthy in vivo 
experiments, which are difficult to model in vitro. On the other 
hand, inter-species differences can limit the usefulness of ani-
mal data for the prediction of human hazard in this area (leist 
and Hartung, 2013). In vitro methods based on human cell 
lines may provide more human-relevant information (Pfaller 
et al., 2001). Biological models for different organs, e.g., liver, 
kidney, lung or brain, have been established, and new culture 
techniques, especially in form of 3D organoids, are expected to 
solve present issues about long-term culturing, absence of rel-
evant inflammatory and immune cells (Hengstler et al., 2012) 
and availability of fully mature cell phenotypes. Stem cells, 
especially pluripotent stem cells, will be a major source of tis-
sues and cells not available otherwise. therefore, research on 
the generation of 2D cultures and 3D tissues from stem cells 
is of high importance. One of the approaches in this direction 
is the European SEURAT-1 project (following the long-term 
strategic target: “Safety evaluation Ultimately Replacing Ani-
mal testing”, http://www.seurat-1.eu). It started in 2011 with 
50 million € joint funding from the European Commission and 
Cosmetics europe and is focusing on the development of non-
animal test systems in the field of repeat dose systemic toxicity 
following a case study approach based on the AOP concept. 
the tox21 consortium and the US ePA's toxCasttM activity in 
the USA (Dix et al., 2007; Judson et al., 2010, 2014) as well as 
other activities in europe and worldwide take similar or com-
plementary approaches (NRC, 2007; Adler et al., 2011; Basket-
ter et al., 2012; Judson et al., 2012; leist et al., 2012b). Key to 
all these activities is the concept that most late (longer term) 

the way forward, as each assay on its own has 80% accuracy, but 
if combined in an ItS, 90% accuracy can be reached (Bauch et 
al., 2012). this level of predictivity would perform better than 
the validated llNA. thus, an ItS would fully replace the exist-
ing animal models. 

Skin sensitization is a field in which several formally val-
idated methods and ItS are expected to emerge in the near 
future. The reasons for this are the following: first, for skin 
sensitization the validation process has clear anchors: this 
is the only toxicological domain that is based on a formally 
validated animal test model (llNA). Moreover, a large set of 
human data on positive control compounds is available, e.g., 
from diagnostic patch testing in dermatology clinics. Second, 
the mechanisms of skin sensitization are well understood, and 
the individual steps are amenable to modeling. third, several 
in vitro models that seek to mimic each single step in the path-
way are already available, and they now need only to be com-
bined in an ItS. CAAt organized a workshop on ItS using the 
example of skin sensitization in June 2013 in Ranco, Italy; the 
respective report is currently being completed. 

the application of the OeCD-promoted concept of “adverse 
outcome pathways” (AOPs) to skin sensitization is relatively 
straightforward. Virtually all key events of the AOP already 
are covered by in vitro assays (Fig. 11)6. Despite this favora-
ble situation, validation of a complete ItS for skin sensitiza-
tion will require further work. It is, for instance, not yet clear 
how the individual tests that cover the steps of the AOP will 
be combined, including how much weight is given to the re-
sults of each assay and how the decision points of tiered testing 
would be structured. The final prediction model must be built 
as a whole on the assembly of tests and on the ItS rules link-
ing them. the process of building and optimizing this overall 
test strategy is made difficult by the fact that the LLNA, even 
though it is one of the most advanced in vivo methods, can yield 
false-negative and false-positive results. Despite these weak-
nesses, and although human data are available as an alterna-
tive reference point, the llNA is the only accepted reference 
for the determination of potency and for providing background 
data for ItS validation. 

the conclusions on the status and roadmap for skin sensitiza-
tion testing are as follows:
– Many non-animal methods for skin sensitization testing have 

been proposed and some of them have been/will be validated 
for the purpose of hazard identification. The development of 
non-animal methods for the evaluation of the relative skin sen-
sitizing potency of contact allergens will require more work.

– Better measurements and tests for exposure are needed, and 
little is known about how to assess mixtures yet.

– Complications may arise when there is a need to test hydro-
phobic compounds or formulations as the proposed models 
may not be adequate. these problems must be tackled sooner 
rather than later and the applicability of each model should 
be assessed accordingly. this will provide opportunities for 
the development of other assays with other applicability do-
mains.

6 http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono(2012)10/part1&doclanguage=en

http://www.seurat-1.eu
http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono
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In summary, repeated dose toxicity will probably be the last 
method to be replaced, the use of Pot and new culture systems 
combined with new technologies and sharing of data on phar-
maceutical case studies could be the opportunity to reduce the 
need for such expensive and long-term studies. 

6.3  Toxicokinetics and quantitative  
in vitro – in vivo extrapolation (qIVIVE)
to relate data from non-animal test systems to the human situa-
tion, the in vitro concentration levels need to be correlated with 
the real exposure in vivo. Procedures for such extrapolations 
(qIVIVe) have been established (Fig. 13). the starting point is 
a determination of the “real” toxicant concentration that a cell 
is exposed to. this may be different from the nominal concen-
tration, because of evaporation, metabolism, binding to plastic 
or uneven distribution in cells. Next, a physiologically-based 
pharmacokinetic (PBPK) model would be constructed for ab-
sorption and distribution in the whole organism, followed by 
metabolism and excretion. In vitro test systems to predict drug 

effects of chemicals will be predicted from the early changes 
they cause in cellular signaling and regulation (Kleensang et 
al., 2014; Blaauboer et al., 2012). therefore, signaling path-
way identification and analysis is a crucial research necessity 
in toxicology, and very detailed quantitative information needs 
to be derived (Fig. 12) to use such data for systems biology 
modeling (Jennings et al., 2013; Krug et al., 2014; Hartung et 
al., 2012). toxicogenomics technologies (Ramirez et al., 2013) 
are important tools that cover a multitude of cellular events. 
However, it is important to apply them to the right biological 
models. For instance, monocultures can hardly model the in-
flammatory responses frequently seen after long-term exposure 
to hazardous chemicals.

For repeated dose toxicity, two different approaches are tak-
en in the development of alternative methods: (a) substitution 
of animals by a battery of relatively complex surrogate mod-
els that reflect important features of target tissues and organs. 
they often use ‘apical’ phenotypic endpoints (e.g., cell death 
markers) as readouts; (b) an integrated and tiered systems bi-
ology approach based on mechanistic endpoints and using the 
vast knowledge on biological regulation and homeostasis. Path-
ways-of-toxicity (Pot), emerging from such approaches, will 
guide hazard evaluation and risk assessment when combined 
with toxicokinetics modelling (Hartung and McBride, 2011; 
Boekelheide and Andersen, 2010). the two types of approaches 
may also be combined.

Fig. 12: Illustration of the different deviations of signals 
(physiological cellular responses) that need to be measured 
by modern in vitro methods
The normal cellular response is shown in blue. This is meant to 
symbolize any cellular function, such as a muscle contraction, an 
electrical signal in neurons or the regulation of glucose. Red and 
white curves exemplify different toxic responses. The examples 
show that key parameters need to be measured at high temporal 
and spatial resolution and over many concentrations to be sure the 
whole range of toxicological reactions is covered. “Toxicity” is in 
many cases not a simple decrease or absence of a response, but 
too much or wrong timing can be equally problematic. 

Fig. 13: Schematic explanation of quantitative  
in vitro – in vivo extrapolation (qIVIVE)
The qIVIVE procedure is considered a pivotal step in the use of in 
vitro data for the risk assessment process. In vitro toxicity assays 
provide a benchmark concentration (BMC), i.e., a concentration 
above which a chemical is considered to be toxic in this system. 
The BMC is used as the point of departure (POD) for further 
qIVIVE steps. It allows the calculation of the corresponding 
human plasma concentration (PC). By taking into account in vitro 
data on metabolic conversion, human physiology and metabolic 
parameters, the human equivalent dose can be estimated. This is 
the starting point of the risk assessment process. 
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ductive toxicity testing has shown high background variability 
(even among untreated control animals) and is characterized by 
low species concordance (toxCast™, for example, showed 60% 
concordance between rat and rabbit studies; and 56% concord-
ance between zebrafish and rat). In some cases, to overcome 
low sensitivity, studies in a second species may be requested 
by regulators. However, the two-species approach increases 
both the cost of the studies and the false-positive rates dramati-
cally (Hartung, 2009). For this reason, in 2009, a revision of the 
ReACH legislation reduced the use of a second species.

Further progress in this area would be accelerated by regu-
latory steps that preclude the use of in vivo data unless they 
come from a formally validated model and therefore have a 
known predictivity (Carney et al., 2011). Uses of the zebrafish 
assay (Selderslaghs et al., 2011; Padilla et al., 2012; truong et 
al., 2014), the embryonic stem cell test (eSt) (van Dartel and 
Piersma, 2011; Seiler and Spielmann, 2011) and further devel-
opments on the basis of ReProtect test systems (Piersma, 2010) 
could immediately fill the gap until assays based on human 
cells become available. The field is developing very dynami-
cally, and, especially in the area of developmental neurotoxic-
ity, many new test systems are emerging (Zimmer et al., 2014; 
Smirnova et al., 2014; leist et al., 2013; Bal-Price et al., 2012). 
the new assays will need to be assembled into an advanced test 
battery using concepts of ItS design (Fig. 15).

The ReProTect project assembled 35 European partners 
from academia, SMes (Small-Medium enterprises) and gov-
ernmental institutes in order to develop in vitro reproductive 
toxicity approaches (http://www.reprotect.eu/). The scientific 
problem of identifying non-animal test methods in this field 
was addressed (Hareng et al., 2005). The project was based on 
a battery of in vitro methods that covered different steps of the 
reproductive cycle (Fig. 16). In a so-called “feasibility study” 
conducted at the end of the project, 10 blinded chemicals were 
tested by the consortium. effects on 3 endpoints, namely male 
fertility, female fertility and embryotoxicity were predicted. the 
results of the feasibility study demonstrated that the vast major-
ity of the predictions made were correct (Schenk et al., 2010). 

metabolism or certain distribution parameters can provide data 
for such modeling (Vinci et al., 2012; Gebhardt et al., 2003) but 
better assays are still required for local specialized metabolism, 
distribution mediated by transporters, and for excretion proc-
esses (e.g., in the kidney). Altogether, this area is far advanced, 
e.g., for drug development, but its general application for chem-
icals requires further development (Bessems et al., 2014). De-
tailed case studies are required to explore the performance of 
currently available methods (Fig. 14).

6.4  Reproductive toxicity
Reproductive toxicology, including developmental toxicol-
ogy, is a particularly difficult field as far as animal-to-human 
predictions are concerned (Knudsen et al., 2011; Makris et al., 
2011). Reproductive toxicity aims to assess possible hazard to 
the reproductive cycle, with a high interest in the early stages 
of embryonic development (embryotoxicity). tests like the 
two-generation study are among the most costly and require 
up to 3,200 animals per substance (Hartung, 2008; Rovida and 
Hartung, 2009). this makes it impossible to test the enormous 
amount of chemicals present in the market, leading to a lack of 
information on reproduction and development toxicity of tens 
of thousands chemicals. Moreover, animal-based tests offer lit-
tle mechanistic insight into a chemical’s toxic mode-of-action 
(MoA) (Knudsen et al., 2013; Knudsen, 2013). Animal repro-

Fig. 15: The roadmap for animal-free reproductive toxicity 
predictions 
In the area of reproductive toxicity the experts suggested, in 
addition to the points summarized in Figures 4 and 6, to include 
several specific measures and research lines to be followed. 

Fig. 14: Roadmap to animal-free toxicokinetic predictions
The experts in the area of toxicokinetics identified research areas 
requiring further work to obtain human-relevant toxicokinetic data 
on xenobiotics independent of animal experiments.

http://www.reprotect.eu/
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not positive (Basketter et al., 2012). The correlation of findings 
in rats and mice is less than 60%, even less if the site of cancer 
in the organism is considered. the experts suggested a thorough 
evaluation of the test, taking into account the principles of ev-
idence-based toxicology (Hoffmann and Hartung, 2006b). this 
might lead to an abolition of the in vivo assay (Fig. 17). Chemi-
cal carcinogenicity may be based either on genotoxic or non-
genotoxic (epigenetic) mechanisms (Oliveira et al., 2007). Alter-
native methods for the determination of genotoxicity have been 
in use for over 40 years. An ItS has been suggested to combine 
such available methods (Pfuhler et al., 2010; Aldenberg and Ja-
worska, 2010). testing for non-genotoxic carcinogens has prov-
en more difficult, but good results have been obtained recently 
by various cell transformation assays (Vanparys et al., 2011). A 
combination of mutagenesis assays, tests for DNA damage, cell 
transformation assays and targeted tests for frequent epigenetic 

In the follow-up European project ChemScreen (http://www. 
chemscreen.eu) 12 chemicals were tested for embryotoxicity in 
a final performance test. The battery correctly detected 11 out 
of 12 compounds tested. the consortium concluded that “this 
study illustrates added value of combining assays that contain 
complementary biological processes and mechanisms, increas-
ing predictive value of the battery over individual assays” 
(Piersma et al., 2013).

In silico models (e.g., the US EPA̓s Virtual Embryo project) 
have also shown potential application in the reproductive toxi-
cology field. It is expected that ultimately a computer model 
that simulates cellular function in the growing embryo can be 
used to determine the effects of teratogens. Some promising first 
results come from an in silico modeling platform: A novel mul-
ti-cellular agent-based model (ABMs) of vasculogenesis using 
the CompuCell3D (http://www.compucell3d.org/) modeling en-
vironment supplemented with semi-automatic knowledgebase 
creation has been developed by ePA. Dynamic cell ABMs have 
been shown to simulate complex developing systems and, con-
sequently, display a potential to simulate adverse effects (Klein-
streuer et al., 2013; Hester et al., 2011; Shirinifard et al., 2013) 
and aberrant tissue fusion (Ray and Niswander, 2012).

6.5  Carcinogenicity
At present, the carcinogenicity hazard of chemicals is deter-
mined by a costly and lengthy animal test, the “cancer bioassay”, 
although its relevance for human health is seriously doubted (Al-
den et al., 1996; Knight, 2007; Gottmann et al., 2001). Results of 
more than 3.500 cancer bioassays, which cost about € 800,000 
per substance and species, are publically available: 53% of all 
substances tested were positive, suggesting an enormous false-
positive rate, but still some accepted human carcinogens were 

Fig. 16: Examples of a test battery 
addressing a highly complex 
toxicological endpoint
The reproductive cycle with its 
four main phases is the target of 
reproductive toxicants. The FP6 EU 
project ReProTect established an  
in vitro test battery for reproductive 
toxicity testing covering the 
reproductive cycle with a series of 
individual tests. Each test system 
covers a small part of the reproductive 
cycle. The names of the different tests 
are depicted outside and inside the 
circle, indicating which part of the 
developmental process is modeled. 
For full explanation see http://axlr8.eu/
axlr8-2010-progress-report.pdf

Fig. 17: Roadmap for animal-free carcinogenicity predictions 
In the area of carcinogenicity the experts suggested, in addition 
to the points summarized in Figures 4 and 6, to include several 
specific measures and research lines to be followed. 

http://www.chemscreen.eu
http://www.chemscreen.eu
http://www.compucell3d.org/
http://axlr8.eu/axlr8-2010-progress-report.pdf
http://axlr8.eu/axlr8-2010-progress-report.pdf
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mechanisms (e.g., nuclear receptor activation) will most likely 
form the basis for a future ItS. Most elements are available in 
some form, but they will require further development and opti-
mization for satisfactory predictivity (Fig. 17).

7  Evaluation of test system performance

evaluation of test system performance has classically consid-
ered three aspects (Fig. 18): (1) the technical reliability of the 
test; (2) the scientific background, rationale and scope; (3) the 
correlation of test data with a gold standard (e.g., animal data). 
the latter point has also been called predictivity (Hartung et al., 
2004; Hoffmann and Hartung, 2006a; Moore et al., 2009). the 
validation procedure has until now followed very strict and rigid 
rules in the field of chemical testing. This has led to high costs 
and long delays before new assays were introduced. Moreover, 
the definition of assay predictivity on the basis of animal data 
has proven to be problematic because of the shortcomings of the 
in vivo experiments. therefore, new validation concepts have 
to be considered. For instance, high throughput screening as-
says need to be treated differently from other tests as, e.g., ring 
trials cannot be performed when certain robotics equipment is 
available only in one place (Judson et al., 2013). In cases where 
predictivity cannot be determined from correlation studies, en-

Fig. 18: New validation approach for novel toxicity tests
At present, test validation relies on three pillars: reliability, 
scientific basis and predictivity. Predictivity has in practical 
terms been determined by the correlation of in vitro test results 
with animal data. This approach is not possible for many of the 
toxicity domains discussed here and many of the assays that 
are developed are part of a test battery. Future validation must 
therefore rely on two pillars: Even more focus is required on test 
quality (reliability). Moreover, the scientific basis of a test needs to 
be broadened to provide a rationale for the predictive capacity of 
the test, not based on statistical correlation but based on scientific 
(mechanistic) explanations. 

Fig. 19: Vision for the future of toxicity testing 
The current approach is first to test unknown chemicals in animal tests. This limits overall throughput and leads to a high rate of false 
positives and false negatives. Mixtures are hardly ever tested because of the limitation of resources. High costs in combination with a 
low predictivity lead to many cases of “no testing”. Mechanistic studies are only carried out in few cases of particular interest to identify 
the factors causing the toxicity. The new approach, suggested here, is based on 21st century in silico and in vitro methods identifying 
PoT. This will in most cases lead to an amount of data that is sufficient to decide whether a substance is toxic (positive) or non-toxic 
(negative) for the intended scenario. Only in few cases, when not enough information can be obtained, will animal tests be performed as 
an additional source of information. Good information can be provided on all chemicals and, due to the high throughput of the approach, 
also on mixtures. 
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