
Introduction

There exists a general assumption that animal
testing helps to ensure human safety and the effi-
cacy of new pharmaceuticals. Such preclinical test-
ing is required by regulatory agencies worldwide
(e.g. 1, 2), and involves at least two species — typ-
ically one rodent and one non-rodent species —
ostensibly to aid the prediction of toxicity and
pharmacokinetics. However, while there is little
supportive evidence for the value or necessity of
this practice (3), it continues,  with apparent disre-
gard for the dearth of new drug approvals and the
drying-up of pipelines over the past decade (e.g.
4–7) that may be a consequence of the way in
which the preclinical testing is currently
performed.

Animals are used in significant numbers for
these purposes. In the UK alone, in 2012, drug
testing involved the use of more than 277,000 ani-
mals (8). The human relevance and predictive
nature of these animal models have been investi-
gated relatively rarely and then only superficially.
Such a lack of evaluation (see Discussion) could be
considered surprising, given the central role of the
models in drug development (9–11), but it is chiefly
due to the difficulty in accessing relevant data,
most of which are unpublished and proprietary to
pharmaceutical companies. Almost invariably, the

human relevance of preclinical animal tests has
been measured via ‘concordance’ metrics (e.g. 12),
which have been interpreted by various authors as
the true-positive rate (sensitivity) or the Positive
Predictive Value (PPV). While these metrics are
appropriate for assessing the reliability of a diag-
nostic test for a specific disorder (e.g. HIV infec-
tion), the insights they provide depend critically on
the question being asked of the diagnostic test.
However, they are not appropriate for assessing
the salient question at issue with animal models,
which is whether or not they contribute significant
weight to the evidence for or against the likely toxi-
city of a given compound in humans.

Overcoming this key problem — almost entirely
overlooked by previous authors — requires a pre-
cise specification of the various terms used (see
Methods). Briefly, the appropriate metrics are
Likelihood Ratios (LRs; 13): the Positive
Likelihood Ratio (PLR) and the inverse Negative
Likelihood Ratio (iNLR). Therefore, there is clearly
a need for the kind of statistically appropriate crit-
ical analysis that we provide here. The data set we
have used is unique, in that it is large and allows
the conditional probabilities required for the LRs
(PLR/iNLR) to be calculated.

The analysis presented here comprises data sets
for the rat, mouse and rabbit. This complements
our recently published analysis of dog preclinical
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data (14), which contains more-complete details of
the statistical methods. A précis of these methods
is provided below.

Methods  

Animal models are widely used to assess the like-
lihood that a given compound will prove toxic or
non-toxic in humans. As with any diagnostic test,
their reliability can only be assessed by performing
tests in which the same compound is given to both
animals and humans, and the presence or absence
of toxicity is recorded. This leads to a 2 × 2 matrix
of results, as shown in Table 1 (15). 

The basis of this matrix is that the human data
are correct, and the animal data are true/false, if
they do/do not match them. The various cells in
this matrix allow a variety of diagnostic metrics to
be deduced, of which the most familiar and widely
used are the true-positive rate for the test (or ‘sen-
sitivity’ = a/[a + c]), and the true-negative rate (or
‘specificity’ = d/[d + b]). In previous research into
the reliability of animal models as predictors of
toxicity in humans, some authors (e.g. 12) have
focused on the sensitivity, expressed as the ‘true-
positive concordance rate’, or the so-called Positive
Predictive Value (PPV), given by a/(a + b), which
reflects the probability that human toxicity was
correctly identified by the animal model, given
that toxicity was observed in the animal model
(e.g. 16). However, neither of these metrics is suit-
able for the role of assessing the evidential weight
provided by any toxicity test. In the case of animal
models, the sensitivity addresses only the ability of
such models to detect toxicity that will subse-
quently manifest itself in humans. This is a neces-
sary, but not sufficient, measure of evidential
weight. Suppose, for example, that the animal
model always indicates toxicity found in humans;
it would then have a sensitivity of 100%. However,
if, in addition, the model always indicated toxicity,
even when such toxicity was not subsequently seen
in humans, its evidential value would be no better
than simply dismissing every compound as toxic
from the outset. Thus, a useful toxicity test must
also be able to give insight into when toxicity seen

in the animal model is not observed in humans,
which requires knowledge of the specificity of the
test.

There is, of course, an obvious reason for the
focus on sensitivity in animal model evaluation: if
a compound is found to be positive for toxicity in an
animal model, it is unlikely to go forward into
human evaluation. Nevertheless, the fact remains
that sensitivity alone cannot be an adequate guide
to the value of animal models.

The case of the PPV is more subtle. This metric
is a measure of the probability that human toxicity
will be correctly identified, given that the animal
model detected toxicity. As such, PPVs are condi-
tional probabilities, the condition being the pre-
existence of a positive animal test result. This
makes PPVs dependent on the prevalence of toxic-
ity in compounds, so it is an inappropriate measure
of the reliability of the test with any specific
compound (e.g. 13, 17). 

Thus, any appropriate metric of the evidential
value of animal models requires knowledge of both
the sensitivity and the specificity of the model.
This, in turn, implies that the appropriate metrics
for the evidential weight provided by an animal
model are LRs (e.g. 17). In general, these are ratios
of functions of the sensitivity and specificity, which
can be extracted from the 2 × 2 matrix given in
Table 1. In the case of animal models, in general,
two LRs are relevant. The first is the so-called
PLR, which is given by: 

PLR = sensitivity/(1 – specificity)
= (a/[a + c])/(b/[b + d])  

It should be noted that, in a relatively small num-
ber of cases (see Table 2), this equation results in
an undefined value when there are no observations
in the animal (i.e. b = 0 in the 2 × 2 matrix). These
cases were eliminated from consideration. This LR
captures the ability of an animal model to add evi-
dential weight to the belief that a specific com-
pound is toxic. Any animal model that gives a PLR
that is statistically significantly higher than 1.0,
can be regarded as contributing evidential weight
to the probability that the compound under test
will be toxic in humans. 
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Table 1: A 2 × 2 matrix of results

Compound toxic Compound not 
in humans toxic in humans

Compound toxic in animal model

Compound not toxic in animal model

a: true positives (TPs) b: false positives (FPs)

c: false negatives (FNs) d: true negatives (TNs)



The other relevant LR is the so-called iNLR,
given by: 

iNLR = specificity/(1 – sensitivity)
= (d/[b + d])/(c/[a + c])  

This LR captures the ability of an animal model to
add evidential weight to the belief that a specific
compound is not toxic: any animal model that gives
an iNLR that is statistically significantly higher
than 1.0 can be regarded as contributing evidential
weight to the probability that the compound under
test will not be toxic in humans. 

At this point, it is worth noting that the above
definitions imply that a good animal model for
detecting human toxicity is not necessarily also
good for detecting an absence of toxicity. That is, a
high PLR does not guarantee a high iNLR; this will
emerge as a key issue in this study. 

The above definitions also underscore the need for
data on the human toxicity of compounds that fail
initial animal tests. Again, a key feature of the cur-
rent study is that this issue has been substantively
overcome — at least, as much as it could ever be over-
come — via data mining methods. Data were
obtained from a leading pharmaceutical safety con-
sultancy, Instem Scientific Limited (Harston,
Cambridge, UK; www.instem-lss.com; ‘Safety Intell -
igence Programme’), with funding provided by
FRAME. All the information stemmed from publicly
accessible sources, including: PubMed (www.ncbi.
nlm.nih.gov/pubmed), the FDA Adverse Event Rep -
orting System (FAERS), DrugBank (www.drugbank.
ca), and the National Toxicology Program (ntp.niehs.
nih.gov). Human and preclinical species data were
available for more than 2,300 drug compounds. 

Inference of the good quality of the data used in
this evaluation is outlined in the Discussion.
Compounds were selected that feature in the
FAERS, FDA New Drug Applications (FDA NDAs)

and DrugBank. Thus, the drugs selected for this
analysis have undergone preclinical testing and
are (or have been) in clinical use: human and ani-
mal data are therefore available for them. Prior to
our analysis, the data provided to us by Instem had
been processed — thus, a non-redundant list of
parent moieties was created, for example, by nor-
malising therapeutic products to their generic
names (e.g. Lipitor to Atorvastatin). This yielded
2,366 compounds. A signature of the effects of each
compound was then created, focusing on tissue-
level effects (e.g. bradycardia and arrhythmic dis-
order would both be considered to be effects on
heart tissues), as well as the individual observa-
tions, which were mapped to their MedDRA
(Medical Dictionary for Regulatory Activities;
www.meddramsso.com) counterparts. MedDRA
observations are classified into four levels, Level 1
being the most specific, and Level 4 providing a
more generic ‘system organ class’. These classifica-
tions help to eliminate false positives (FPs) that
may arise from species-specific observations, and
help the identification of concordant observations
that might otherwise have been missed by their
‘rolling up’ into more generic terms. A threshold of
a minimum of five observations in both humans
and the preclinical species had been applied, pre-
sumably to avoid the inclusion of effects considered
to be ‘rare’.

LRs were derived for both broad and tissue-level
effects, as well as more specific biomedical obser-
vations (BMOs) mapped to MedDRA classifications
(Level 1 [most specific] to Level 4 [more generic
‘system organ class’]). The numbers of classifica-
tions of effects for each species, and therefore the
numbers of LRs calculated for each species, are
shown in Table 2. Also shown are the numbers of
BMO classifications not involving the species of
interest, which were eliminated from further con-
sideration. In total, 3,275 comparisons were made
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Table 2: The number of classifications of adverse effects for each species, as used in this
analysis

Tissue-level Biomedical Total Classifications 
Species effects observations (BMOs) classifications used eliminated

Rat 62 548 610 271/881
Mouse 62 342 404 266/670
Rabbit 54 221 275 141/416

Dog 52 384 436 14/450

The numbers of classifications of effects for each species, and therefore the numbers of LRs calculated for each
species, are shown. The total number of classifications used in the analysis is shown in column 3 (Total
classifications used), which comprises the sum of column 1 (Tissue-level effects) and column 2 (BMOs). The number
of BMO classifications for which there were no effects observed in the preclinical species of interest, and which were
therefore eliminated from consideration in our analysis, are shown in column 4 (Classifications eliminated), out of
the total number of classifications for which there were data. In total, 3,275 comparisons were made for each
human–animal pair (human–rat, human–mouse, human–rabbit), for 2,366 compounds.



for each human–animal pair (human–rat, human–
mouse, human–rabbit), for 2,366 compounds. The
Instem Scientific data on which our analysis was
based are shown in our complementary paper (14),
and the full set of data, including 95% Confidence
Intervals, will be available on the ATLA website
(www.atla.org.uk).

With regard to potential bias: false negatives
(FNs) are more common than FPs, since there is a
bias resulting from a ‘precautionary principle’ not to
progress positives to human administration. This
has been mitigated by limiting the data set to com-
pounds reported in the FAERS database. Therefore,
all the compounds are certain to have proceeded to
market, and animal preclinical data are available
for these compounds. Specific details of how the FPs
that were identified arose were not sought, because
they were not pertinent to this analysis and it was
not feasible, given the nature of the data set. It
must be assumed that the animal data were corre-
lated with the human data retrospectively, and/or
the human data arose from post-marketing studies,
and/or clinical trials were applied for and approved,
since the adverse effect(s) in animals were minor
and/or mitigated by other data. 

Results

Median LRs and ranges are shown in Table 3. All
the PLRs were generally high: median values were
101 (rabbit), 203 (mouse) and 253 (rat), which com-
pare favourably to the median PLR of 28 for the dog
(14). In common with the canine data, these values
suggest that compounds showing toxicity in these
animal species are also likely to be toxic in humans.
However, the range of PLRs for each of these
species varies enormously. The PLR ranges were:
13–1,348 (rabbit); 23–2,361 (mouse); and 24–2,360
(rat). These ranges are considerably greater than
those seen for the dog, i.e. 5–549 (14), meaning that,
with no obvious pattern regarding the form of toxic-
ity, the reliability of this aspect of animal models
cannot be generalised or regarded with confidence.

In contrast, the median iNLRs are substantially
lower: 1.12 (rabbit); 1.39 (mouse); and 1.82 (rat).
While the ranges of iNLRs, if not for the rabbit
(1.01–2.33) but certainly for the mouse (1.03–50)
and the rat (1.02–100), were much greater than the
range for the dog iNLR values (1.01–1.92), the medi-
ans compare only slightly favourably to the median
iNLR of 1.10 for the dog (14). 

One major caveat regarding these data, and the
associated ranges of LR values, is that they incor-
porate a significant number of adverse effects and
events that are rarely caused and/or reported. In
those specific cases, the ability to reliably estimate
the sensitivity and specificity of the dog tests may
be compromised. The frequency of rare events is
depicted for each species in Figure 1, in which his-
tograms show that, for the preclinical species, an
average of one third (33%) of ADR classes have
sample sizes of ≤ 10, and more than half (55%) have
sample sizes of ≤ 20. For humans — for which the
threshold for rare events was set higher on account
of greater sample sizes — 64% and 78% of ADR
classes have sample sizes of ≤ 100 and ≤ 200, respec-
tively. The range of sample sizes for each species is
also depicted in Figure 2, via ‘box and whisker’
plots. For each species, a grouped histogram repre-
senting those in Figure 1 is shown for reference,
alongside the associated quantile and outlier box
plots. These show clearly how, while the range of
sample sizes for the ADR classifications is broad (as
indicated by the maximum and minimum
whiskers), the majority of the sample sizes are
toward the lower end of the range, shown by the box
that represents the middle 50% of the distribution. 

In order to assess the impact of including the rare
events/low sample sizes in our analysis, we recalcu-
lated the PLRs and iNLRs for each species compari-
son, with the rare events in each preclinical species
removed (Figures 3a and 3b), and with the rare
events in both the preclinical species and humans
removed (Figures 3c and 3d). Notably, removing rare
events significantly reduces the PLR for each
species, particularly for the rat and the mouse. With
regard to iNLR values for each species, the removal

Table 3: Median LRs and ranges for the rat, mouse and rabbit

Species PLR (median) iNLR (median) PLR range iNLR range

Rat 253 1.82 24–2360 1.02–100
Mouse 203 1.39 23–2361 1.03–50
Rabbit 101 1.12 13–1348 1.01–2.33

Dog 28 1.10 5–549 1.01–1.92

All the PLRs were generally high, and compared favourably to those for the dog, suggesting that compounds showing
toxicity in those animals are also likely to be toxic in humans. However, high ranges, with no obvious pattern of
toxicity, suggest the reliability of this aspect cannot be generalised or regarded with confidence. Median iNLRs were
substantially lower, and compared only slightly favourably to those for the dog, supporting the view that animals
provide very little or essentially no evidential weight to this aspect of toxicity testing.
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Figure 1: Sample sizes for each ADR class

For each species (including humans), the sample size (number of compounds for which a specific ADR was observed)
is shown for each ADR class. Markers indicate two thresholds of rare events: for each preclinical species, sample sizes
of ≤ 10 and ≤ 20, and for humans (given the much greater sample sizes), ≤ 100 and ≤ 200. The columns to the right of
each marker represent ADR classes for which there are ≤ the indicated sample sizes. Many ADR classes have small
sample sizes for each species. For the preclinical species, an average of one third (33%) of ADR classes have sample
sizes of ≤ 10, and more than half (55%) have sample sizes of ≤ 20. For humans, 64% and 78% of ADR classes have
sample sizes of ≤ 100 and ≤ 200, respectively.
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For each species (including humans), the sample size (number of compounds for which a specific ADR was observed)
is shown for each ADR class. Markers indicate two thresholds of rare events: for each preclinical species, sample sizes
of ≤ 10 and ≤ 20, and for humans (given the much greater sample sizes), ≤ 100 and ≤ 200. The columns to the right of
each marker represent ADR classes for which there are ≤ the indicated sample sizes. Many ADR classes have small
sample sizes for each species. For the preclinical species, an average of one third (33%) of ADR classes have sample
sizes of ≤ 10, and more than half (55%) have sample sizes of ≤ 20. For humans, 64% and 78% of ADR classes have
sample sizes of ≤ 100 and ≤ 200, respectively.

Figure 1: continued
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of rare events in the preclinical species results in a
marginal increase in iNLR in each case, though,
when rare events in humans are also removed, the
iNLRs for the rat and the mouse decrease further.
These observations are further supported by the
scatter plots shown in Figure 4. These plots show
that observed PLRs with higher values tend to have
lower sample sizes, both in the preclinical animal
and in humans, and that more-robust PLRs with
higher sample sizes tend to have lower values.
Conversely, observed iNLRs with higher values tend
to have higher sample sizes, both in the preclinical
animal and in humans, and more-robust iNLRs with
higher sample sizes also tend to have higher values,
though the increase in iNLR with sample size is
slight. In summary, taking account of rare events, to
illustrate their impact on our results and how mak-
ing our results more statistically robust affects
them, augments our conclusions. The evidential
weight provided by animal tests given a positive tox-
icology result, is significantly decreased, most con-
spicuously for the rat and the mouse. The evidential
weight provided by animal tests given a negative
toxicology result, is also decreased for the rat and
the mouse; while it is marginally increased for the

rabbit and the dog, the values remain extremely low. 
Therefore, in common with the canine data, our

analysis of data from these other species supports
the view that animals provide very little or essen-
tially no evidential weight to this aspect of toxicity
testing. Specifically, the fact that a compound
shows no toxic effects in animals provides essen-
tially no insight into whether the compound will
also show no toxic effects in humans. This lack of
evidential weight has important implications for
the role of animals in toxicity testing, especially for
the pharmaceutical industry. The critical observa-
tion for deciding whether a candidate drug can pro-
ceed to testing in humans, is the absence of toxicity
in tests on animals. However, our findings show
that the predictive value of the animal test in this
regard is barely greater than that which would
result merely by chance (see below).

Discussion  

The analysis presented here complements and
augments our recently published similar analysis
of canine toxicity data (14). These analyses are
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For each species (including humans), the sample size (number of compounds for which a specific ADR was observed)
is shown for each ADR class. Markers indicate two thresholds of rare events: for each preclinical species, sample sizes
of ≤ 10 and ≤ 20, and for humans (given the much greater sample sizes), ≤ 100 and ≤ 200. The columns to the right of
each marker represent ADR classes for which there are ≤ the indicated sample sizes. Many ADR classes have small
sample sizes for each species. For the preclinical species, an average of one third (33%) of ADR classes have sample
sizes of ≤ 10, and more than half (55%) have sample sizes of ≤ 20. For humans, 64% and 78% of ADR classes have
sample sizes of ≤ 100 and ≤ 200, respectively.

Figure 1: continued
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Figure 2: Box plots to illustrate sample-size distribution

For each species (including humans), the distribution of sample sizes (number of compounds for which a specific
ADR was observed) is illustrated via ‘box and whisker’ plots. In each case, column 1 depicts a condensed ‘grouped’
sample size histogram, using the same data that generated the histograms in Figure 1, for ease of comparison.
Column 2 shows a standard quantile box plot, and column 3 an outlier box plot. The ‘box’ is bounded by the lower
(25%) and upper (75%) quartiles, and therefore represents the interquartile range, i.e. the 50% of sample sizes that lie
either side of the median value, which itself is shown by the horizontal line bisecting the box. The mean value is
indicated by the diamond. The maximum and minimum sample sizes are shown by the whiskers at the top and
bottom of the plots, respectively. For the outlier plot in column 3, outlier values are shown as dots, which are greater
than 1.5× the interquartile range above the upper (75%) quartile.
The precise values for each marker are provided in the accompanying box (Quantiles and Summary Statistics) beside
the plots. These box plots demonstrate that many ADR classes have small sample sizes, for each species. For the
preclinical species, an average of one third (33%) of ADR classes have sample sizes of ≤ 10, and more than half (55%)
have sample sizes of ≤ 20. For humans, 64% and 78% of ADR classes have sample sizes of ≤ 100 and ≤ 200,
respectively.
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Figure 2: continued

For each species (including humans), the distribution of sample sizes (number of compounds for which a specific
ADR was observed) is illustrated via ‘box and whisker’ plots. In each case, column 1 depicts a condensed ‘grouped’
sample size histogram, using the same data that generated the histograms in Figure 1, for ease of comparison.
Column 2 shows a standard quantile box plot, and column 3 an outlier box plot. The ‘box’ is bounded by the lower
(25%) and upper (75%) quartiles, and therefore represents the interquartile range, i.e. the 50% of sample sizes that lie
either side of the median value, which itself is shown by the horizontal line bisecting the box. The mean value is
indicated by the diamond. The maximum and minimum sample sizes are shown by the whiskers at the top and
bottom of the plots, respectively. For the outlier plot in column 3, outlier values are shown as dots, which are greater
than 1.5×  the interquartile range above the upper (75%) quartile.
The precise values for each marker are provided in the accompanying box (Quantiles and Summary Statistics) beside
the plots. These box plots demonstrate that many ADR classes have small sample sizes, for each species. For the
preclinical species, an average of one third (33%) of ADR classes have sample sizes of ≤ 10, and more than half (55%)
have sample sizes of ≤ 20. For humans, 64% and 78% of ADR classes have sample sizes of ≤ 100 and ≤ 200,
respectively.
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urgently required, to support informed debate
about the value of animal models in preclinical
testing. It is acknowledged among some stakehold-
ers (if not universally among all stakeholders) that
assessment of the scientific value of animal data in
drug development is necessary, has been scarce,
and has been thwarted for decades by the lack of
availability of relevant data for analysis (e.g.
18–20). Nevertheless, primarily due to concerns
over privacy and commercial interests, data shar-
ing and making data available continue to be resis-
ted, in spite of assurances to the contrary from the
industry (18). 

Those few analyses that have been done, tend to
reflect unfavourably on animal models. In 2012, a
study that expressly set out to minimise bias,
showed that 63% of serious ADRs had no counter-
parts in animals, and less than 20% of serious
ADRs had an actual positive corollary in animal

studies (21). Other similar examples exist for test-
ing generally (e.g. 22–24), and more-specifically,
for example, in teratology (e.g. 25, 26) and drug-
induced liver injury (e.g. 3, 27). One notable study
claimed a good concordance between animal and
human toxicology (12), though neither the predic-
tive nature of the animal data for humans, nor the
evidential weight provided by those data, were
addressed (28).

We have, for the first time, addressed the salient
question of the contribution of evidential weight for
or against the toxicity of a given compound in
humans by data from animal tests, by using the
appropriate metrics of LRs. Furthermore, we have
applied the apposite LRs to a data set of an
unprecedented scale, to critically question the
value of the use of the main preclinical animal
species in the testing of new human pharma -
ceuticals.
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Standard deviation 226.61868
Standard error mean 7.6349773
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Figure 2: continued

For each species (including humans), the distribution of sample sizes (number of compounds for which a specific
ADR was observed) is illustrated via ‘box and whisker’ plots. In each case, column 1 depicts a condensed ‘grouped’
sample size histogram, using the same data that generated the histograms in Figure 1, for ease of comparison.
Column 2 shows a standard quantile box plot, and column 3 an outlier box plot. The ‘box’ is bounded by the lower
(25%) and upper (75%) quartiles, and therefore represents the interquartile range, i.e. the 50% of sample sizes that lie
either side of the median value, which itself is shown by the horizontal line bisecting the box. The mean value is
indicated by the diamond. The maximum and minimum sample sizes are shown by the whiskers at the top and
bottom of the plots, respectively. For the outlier plot in column 3, outlier values are shown as dots, which are greater
than 1.5× the interquartile range above the upper (75%) quartile.
The precise values for each marker are provided in the accompanying box (Quantiles and Summary Statistics) beside
the plots. These box plots demonstrate that many ADR classes have small sample sizes, for each species. For the
preclinical species, an average of one third (33%) of ADR classes have sample sizes of ≤ 10, and more than half (55%)
have sample sizes of ≤ 20. For humans, 64% and 78% of ADR classes have sample sizes of ≤ 100 and ≤ 200,
respectively.
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Substantiation of data quality is evidenced by: a)
the methods used to source the data and the
assured quality of the supplying databases (listed
earlier); b) the ways in which the data had been
used recently as a basis for scientific publications
and presentations (e.g. 29–32); and c) the interna-
tional corporate and academic clients that have
used the consultancy and its data (e.g. Astra -
Zeneca; see 29–32). In addition, the impact of
‘missing data’ (i.e. unpublished data held by phar-
maceutical companies) was mitigated by strictly
limiting the data set to drugs “with the greatest
chance of having been evaluated in all the species

included in the study”. In other words, “…lack of
evidence for an association between a compound
and a specific BMO demonstrates a real absence of
effect, and is not due to missing data” (direct
quotes from the Instem Scientific Ltd Analysis
Report, unpublished). 

Naturally, there must be caveats. Our analysis
was limited to data that are published and publicly
available. It is widely acknowledged that many ani-
mal experimental results/preclinical data remain
unpublished and/or proprietary, for a variety of rea-
sons (e.g. 21, 33–36). Such publication bias is a
major problem (e.g. 37–40), and, compounded by

Figure 3: Impact of rare ADRs on LRs

= Rat; = mouse; = rabbit; = dog.
Median PLRs and iNLRs were recalculated for each preclinical species–human data set, with rare events removed for
illustrative purposes. Graphs a and b show the median PLR and iNLR values, respectively, with rare events removed
from the animal data only; graphs c and d show the median PLR and iNLR values, respectively, with rare events
removed from both the animal data set and the human data set. For each animal species–human pair, the first point
on each line shows the median PLR or iNLR for the entire data set; the second point (data minus rares 1) shows the
median PLR or iNLR for the data set with rare events below the first threshold removed (see the Results section); and
the third point (data minus rares 2) shows the median PLR or iNLR for the data set with rare events below the
second threshold removed (see the Results section). Removing rare events significantly reduces the PLR for each
species, particularly for the rat and the mouse. It results in a marginal increase in iNLR in each case, although,
when rare events in humans are also removed, the iNLRs for the rat and the mouse decrease further.
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other factors, such as size and quality of the animal
studies, variability in the requirements for report-
ing animal studies, ‘optimism bias’, and lack of ran-
domisation and blinding (34, 41), it means that
gauging the true contribution of animal data to
human toxicology is virtually impossible — at least
for third parties without access to pharmaceutical
company files. It would be an interesting exercise to
speculate on how such biases affect analyses such as
ours. Such speculation is acknowledged to be diffi-
cult, however, due to a lack of empirical studies of
toxicological bias, and the absence of knowledge of
its prevalence and impact (33).

All data sets are imperfect to varying degrees.
However, it is only possible to use data which are
available, and to ensure, as far as is feasible, that
those data are of good quality and as free from bias
as possible, and that their analysis and derived
conclusions are as objective as possible. It must be
made abundantly clear that we, the authors of this
report, did not make decisions regarding the toxic-
ity/non-toxicity of the drugs, or decide upon or
apply any criteria to such decisions. The mining of
the data, and the decisions on toxicity of the drugs,
were independent of the authors of this paper, and
were made by one or more of the authors of the

Figure 3: continued
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= Rat and human; = mouse and human; = dog and human; = rabbit and human.
Median PLRs and iNLRs were recalculated for each preclinical species–human data set, with rare events removed for
illustrative purposes. Graphs a and b show the median PLR and iNLR values, respectively, with rare events removed
from the animal data only; graphs c and d show the median PLR and iNLR values, respectively, with rare events
removed from both the animal data set and the human data set. For each animal species–human pair, the first point
on each line shows the median PLR or iNLR for the entire data set; the second point (data minus rares 1) shows the
median PLR or iNLR for the data set with rare events below the first threshold removed (see the Results section); and
the third point (data minus rares 2) shows the median PLR or iNLR for the data set with rare events below the
second threshold removed (see the Results section). Removing rare events significantly reduces the PLR for each
species, particularly for the rat and the mouse. It results in a marginal increase in iNLR in each case, although,
when rare events in humans are also removed, the iNLRs for the rat and the mouse decrease further.
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Figure 4: Scatter plots to illustrate the dependence of PLR and iNLR values on sample size

= 0.9–1.4 log10(nHuman); = 1.4–1.9 log10(nHuman); = 1.9–2.4 log10(nHuman); = 2.4–2.9 log10(nHuman);
= 2.9–3.4 log10(nHuman).

Each plot shows a sample of 200 LR values for the dog, for reasons of clarity, and shows PLR (a) and iNLR (b)
against animal (x axis) and human (dot intensity) sample sizes. Observed PLRs with higher values tend to have
lower sample sizes, both in the preclinical animal and in humans, and more robust PLRs (with higher sample sizes)
tend to have lower values. Conversely, observed iNLRs with higher values tend to have higher sample sizes, both in
the preclinical animal and in humans, and more robust iNLRs (with higher sample sizes) also tend to have higher
values, though the increase in iNLR with sample size is slight. The evidential weight provided by animal tests given
a positive toxicology result is significantly decreased by the omission of rare events from the data set, most
conspicuously for the rat and the mouse. The evidential weight provided by animal tests given a negative toxicology
result is also decreased for the rat and the mouse, when rare events are excluded; while it is marginally increased for
the rabbit and dog, the values remain extremely low.
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Figure 4: continued
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= 0.9–1.4 log10(nHuman); = 1.4–1.9 log10(nHuman); = 1.9–2.4 log10(nHuman); = 2.4–2.9 log10(nHuman);
= 2.9–3.4 log10(nHuman).

Each plot shows a sample of 200 LR values for the dog, for reasons of clarity, and shows PLR (a) and iNLR (b)
against animal (x axis) and human (dot intensity) sample sizes. Observed PLRs with higher values tend to have
lower sample sizes, both in the preclinical animal and in humans, and more robust PLRs (with higher sample sizes)
tend to have lower values. Conversely, observed iNLRs with higher values tend to have higher sample sizes, both in
the preclinical animal and in humans, and more robust iNLRs (with higher sample sizes) also tend to have higher
values, though the increase in iNLR with sample size is slight. The evidential weight provided by animal tests given
a positive toxicology result is significantly decreased by the omission of rare events from the data set, most
conspicuously for the rat and the mouse. The evidential weight provided by animal tests given a negative toxicology
result is also decreased for the rat and the mouse, when rare events are excluded; while it is marginally increased for
the rabbit and dog, the values remain extremely low.



drug/toxicity papers and/or database submissions
used, and the data-mining consultancy/curators of
the Safety Intelligence Programme, Instem
Scientific Limited. Therefore, if any pharmaceuti-
cal industry stakeholder disagrees with our con-
clusions, it is incumbent on them, as the holders of
significant amounts of unpublished data, to either
conduct an investigation into the worth of the ani-
mal models they use routinely, or to facilitate such
an investigation by a third party. The latter course
of action could be facilitated by making their
anonymised data available for analysis, in accor-
dance with the promotion of transparency cited in
EU Directive 2010/63/EU (42).

Our findings have practical implications for the
use of animal models for toxicity testing, especially
in the pharmaceutical industry. Reliance on flawed
models of toxicity testing leads to two types of fail-
ure. If the models have poor PLRs, then there is a
risk that many potentially useful compounds will
be wrongly discarded, because of FPs produced by
the toxicity model. On the other hand, if the mod-
els have poor iNLRs, then many toxic compounds
will wrongly find their way into human tests, and
will fail in clinical trials. The relatively high PLRs
found in this study show that animal models may
not be leading to the loss of many potentially valu-
able candidate drugs through the generation of
FPs. However, our results do imply that many
toxic drugs are not being detected by animal mod-
els, leading to the risk of unnecessary harm to
humans. Notably, the removal of rarely caused/
reported adverse events from our data, which to
some degree dominate the data set, in order to
make our analysis more statistically robust, fur-
ther substantiated and validated our conclusions.

In this regard, our findings are entirely consis-
tent with the acknowledged failure of animal mod-
els in general to provide guidance on likely toxicity
ahead of the entry of compounds into human trials.
Drug attrition has increased significantly over the
past two decades (e.g. 4, 5, 43–48): 92–94% of all
the drugs that pass preclinical tests fail in clinical
trials, mostly due to unforeseen toxicities (49–51),
and half of those that succeed may be subsequently
withdrawn or re-labelled due to ADRs not detected
in the animal tests (52). ADRs are a major cause of
premature death in developed countries (53). A
major contributing factor is the inadequacy of pre-
clinical animal tests: one recent study showed that
63% of ADRs had no counterpart in animals, and
less than 20% had a positive corollary in animal
studies (21).

There is a scientific basis for the inadequacy of
preclinical animal tests. Foremost, are differences
in the main enzymes responsible for the metabo-
lism of drugs — the cytochrome P450 (CYP)
enzymes (54), which are believed to be involved in
the metabolism of more than 90% of drugs (55).
While members of the CYP superfamily of enzymes

(consisting of 18 families and 43 subfamilies) are
highly conserved (typically 75–80% amino-acid
sequence identity), it is noted that minor changes
in their amino-acid sequences — even one single,
conservative substitution — may result in signifi-
cant differences in activity and/or substrate speci-
ficity (56, 57). With regard to differences between
species, there is an acknowledged paucity of avail-
able comparable data (54). However, reports of
important species differences do exist, and suggest
that this is a widespread phenomenon that may
have significant consequences for the extrapola-
tion of animal data to humans (e.g. 58–62).
Important differences with consequences for
human extrapolation exist, not just in rodents, but
also in the non-rodent species used in drug testing,
such as monkeys (58) and dogs (55, 63). 

These differences comprise not only differences
in amino-acid sequence and catalytic activity, but
also in the cellular levels of specific P450 enzymes,
which, as in the case of P450 1A2, can show a 25-
fold difference between certain species, or be
entirely absent in other species (57, 64). Indeed,
there is significant variation in the complement of
P450 isoforms between humans and other species:
for example, humans actually have fewer func-
tional P450 genes than mice, which exhibit sub-
strate specificities and regulatory patterns that
can differ markedly from the P450s in other
species (65). For example, CYP2B is well conserved
between rodents and rabbits, though it is poorly
expressed in human liver; CYP3A is the major
component of human hepatic P450, but is gener-
ally at a low level in other animals, notably in
experimental species (64). Four subfamilies of
enzymes have been lost in humans compared to
rodents, while some genes present in humans are
absent in mice: species differences in the seven
main CYP gene clusters “pose serious problems in
interpretation, when extrapolating from the mouse
to human” (66). The 2A subfamily differ markedly
in catalytic specificity, despite their sequence sim-
ilarity (57), and levels of several subfamily forms
are relatively low in humans, meaning that com-
parisons of their activities across species “may be
problematic” (67). In the 2C subfamily, “…similar-
ity of one catalytic activity among animal species
may have little predictive value for the other reac-
tions catalyzed by the enzymes”, and several
genetic polymorphisms have been noted in
humans, but not in other animals (57).
Extrapolation from animal P450 activities to
humans must be done with “some caution” for sub-
families 1A1, 1A2, 17A, 1B1 and 4A, “more cau-
tion” for subfamilies 2D and 3A, and “major
problems” are noted for subfamilies 2A, 2B and 2C
(57).

There are marked species differences in the
nuclear receptors involved in the activation of CYP
pathways, which “make the prediction of cyto -

Animal models predicting human toxicology and drug safety                                                                                                                                195



chrome P450 (CYP) induction in humans from data
derived from animal models problematic” (68, 69).
Non-genotoxic inducers of CYPs 2B and 4A cause
liver tumours in rats and mice, for example, but
not in humans (69). There are also notable differ-
ences, not only between rats and mice, but also
between strains of the same species, which may be
further confounded by differences resulting from
dietary and other environmental factors (64). It is
believed that human polymorphic drug metabo-
lism, underpinned by intra-species variability in
P450 enzymes, is a leading cause of adverse drug
reactions (70). 

Conclusions  

This analysis of the most comprehensive quantita-
tive database of publicly-available animal toxicity
studies yet compiled, suggests that results from
tests on animals (specifically rat, mouse and rabbit
models) are highly inconsistent predictors of toxic
responses in humans, and are little better than what
would result merely by chance — or tossing a coin —
in their most important role of providing a basis for
deciding whether a compound should proceed to
testing in humans. In other words: “…for any puta-
tive source of evidential weight to be deemed useful,
its specificity and sensitivity must be such that LR+
[i.e. PLR] > 1. Tossing a coin contributes no eviden-
tial weight to a given hypothesis, as the sensitivity
and specificity are the same — 50% — and thus the
LR+ [i.e. PLR] is equal to 1” (28).

This analysis complements, and to a large
degree is in accordance with, our recent findings
for predictions from dog studies (14), as follows:
PLRs were generally high, showing that a drug
that is toxic in these species is likely to be toxic in
humans. The rat was the species with the highest
median PLR, followed by the mouse, then the rab-
bit. All three were higher than the one for the dog.
However, the PLRs for each species were
extremely variable — even more so than for the
dog — and with no obvious pattern, suggesting
that this aspect of animal tests cannot be consid-
ered particularly reliable or helpful for any specific
new drug. Notably, removing rare events from the
data set in order to strengthen the analysis
resulted in a marked decrease in PLR values, par-
ticularly for the rat and the mouse. More impor-
tantly, while iNLRs were much more consistent
than PLRs for each species, the range of values
was relatively high for the rat and mouse, in con-
trast to the ones for the rabbit and dog. While the
removal of rare events from the data set resulted
in a slight increase in iNLR values in two out of
eight cases, the values remained very low, indicat-
ing the provision of little evidential weight. The
median values were better than the median for the
dog and, though the order of species from ‘best’ to

‘worst’ was the same, all medians were very low,
showing that these species provide very little, or
essentially no, evidential weight concerning this
aspect of toxicity testing. Specifically, if a com-
pound shows no toxic effects in rats, mice, rabbits
or dogs, this provides essentially no insight into
whether the compound will also show no toxic
effects in humans. This is crucial: a critical obser-
vation for deciding whether a candidate drug can
proceed to testing in humans is the absence of
toxicity in tests on animals, and our findings
show that the predictive value of the animal tests
in this regard is barely greater than that by
chance. 

This can be illustrated quantitatively. Suppose
researchers wish to investigate a candidate com-
pound belonging to a family which prior experience
indicates has a 70% probability of absence of ADRs
in humans. Before conducting tests in humans, the
drug is tested in animals. By using the median
iNLR figures found by our study, if the compound
shows no sign of toxicity in the rabbit, the proba-
bility that the compound will also show no toxic
effects in humans will have been increased by the
animal testing from 70% to 72%: this is identical to
the increase from the performance of tests in dogs
(14). These results suggest that testing in the dog
or the rabbit contribute essentially no additional
confidence in the outcome, but at considerable
extra cost, both in monetary terms and in terms of
animal welfare. This also has obvious practical rel-
evance to the issue of high attrition rates in clini-
cal trials on new drug candidates. The mouse and
rat studies performed marginally better in this
respect: lack of toxicity in the mouse increased the
probability of no toxic effects in humans from 70%
to 76%, and lack of toxicity in the rat increased the
probability from 70% to 81%.

A mean increase in the probability that a new
drug will not be toxic to humans of just 5% in these
four species, suggests that these tests are not fit
for purpose (i.e. to validate the progression of test-
ing from animals to humans), and that they are not
worth the cost in terms of monetary expense, man-
hours, and animal suffering and lives. It is argued
that a comprehensive suite of more reliable alter-
native methods is available (18, 71, 72), and it is
difficult to conceive that they would add less evi-
dential weight than the animal tests. Combined
with considerable public concern over the use of
animals in science (73), and the high ethical costs
of doing so, we conclude that preclinical testing of
pharmaceuticals in animals cannot currently be
justified on scientific or ethical grounds. 
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