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Abstract
Insulin resistance is a hallmark of type 2 diabetes. In 
an effort to understand and treat this condition, re-
searchers have used genetic manipulation of mice to 
uncover insulin signaling pathways and determine the 
effects of their perturbation. After decades of research, 
much has been learned, but the pathophysiology of 
insulin resistance in human diabetes remains contro-
versial, and treating insulin resistance remains a chal-
lenge. This review will discuss limitations of mouse 
models lacking select insulin signaling molecule genes. 
In the most influential mouse models, glucose metabo-
lism differs from that of humans at the cellular, organ, 
and whole-organism levels, and these differences limit 
the relevance and benefit of the mouse models both 
in terms of mechanistic investigations and therapeutic 
development. These differences are due partly to im-
mutable differences in mouse and human biology, and 
partly to the failure of genetic modifications to produce 
an accurate model of human diabetes. Several fac-
tors often limit the mechanistic insights gained from 
experimental mice to the particular species and strain, 
including: developmental effects, unexpected meta-
bolic adjustments, genetic background effects, and 
technical issues. We conclude that the limitations and 

weaknesses of genetically modified mouse models of 
insulin resistance underscore the need for redirection of 
research efforts toward methods that are more directly 
relevant to human physiology. 

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Insulin resistance is central to the pathophysi-
ology of type 2 diabetes. The molecular origins of insu-
lin resistance have been investigated using genetically 
modified mice. Much has been learned from this work, 
but new treatments for insulin resistance have not been 
forthcoming. Knockout mouse models of diabetes are 
limited by several factors including species differences 
in glucose metabolism. These are due partly to spe-
cies differences in physiology, and partly to the failure 
of genetic modifications to produce an accurate model. 
Advancement may require a redirection of research ef-
forts toward methods that are more directly relevant to 
human physiology. 
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INTRODUCTION
Type 2 diabetes is a growing public health problem af-
fecting approximately 26 million adults in the United 
States, with pre-diabetes affecting an additional 79 mil-
lion[1]. The natural history of  type 2 diabetes starts with 
insulin resistance, which develops over time and often 
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precedes a diagnosis by many years. The pancreas com-
pensates for insulin resistance by increasing insulin secre-
tion, often leading to hyperinsulinemia. For many insulin-
resistant patients, the pancreas is unable to sustain a high 
level of  insulin secretion. As the pancreas fails to meet 
the demand for insulin, plasma glucose rises. Patients are 
then at risk of  morbidity and mortality associated with 
complications such as neuropathy, retinopathy, nephropa-
thy, and increased risk of  cardiovascular disease. Overall, 
type 2 diabetes decreases life expectancy at age 50 or 
older by about 8 years[2]. Aside from diabetes and the 
metabolic syndrome, insulin resistance is also associated 
with polycystic ovarian syndrome and other problems. 
Understanding the cellular and molecular causes of  insu-
lin resistance is an area of  active research because of  the 
need to discover new therapies to help patients.

Animal models are often used to investigate mecha-
nisms of  insulin resistance and develop therapeutic 
agents. In the field of  type 1 diabetes, serious limitations 
of  animal models have become apparent[3]; we therefore 
sought to assess the utility of  select mouse models used 
in type 2 diabetes research, specifically insulin signaling 
and resistance. We begin with a brief  summary of  insulin 
signaling, followed by a closer look at general limitations 
of  mouse models and specific limitations of  knockouts 
lacking select insulin signaling molecule genes.

Insulin resistance is defined as the failure of  cells to 
respond normally to insulin, and most importantly, to 
insulin’s glucose-lowering effects. It can be measured by a 

number of  approaches, including the Homeostatic Model 
Assessment of  Insulin Resistance, which is based on fast-
ing glucose and insulin levels, and the gold standard ap-
proach, a hyperinsulinemic-euglycemic clamp test[4]. On 
a cellular level, insulin resistance manifests differently in 
different tissues (Figure 1). Insulin-resistant muscle cells 
fail to uptake glucose and other nutrients in response to 
insulin, whereas in adipose tissue, insulin resistance leads 
to greater hydrolysis of  stored triglycerides in addition to 
decreased nutrient uptake. In the liver, insulin promotes 
glycogen synthesis and prevents the release of  stored glu-
cose, thereby raising blood glucose levels. In the brain, in-
sulin decreases appetite and hepatic glucose production[5].

The molecular mechanisms of  insulin resistance in 
type 2 diabetes have not been fully characterized, al-
though many important biochemical, metabolic, and ge-
netic features have been identified. Accumulated findings 
have highlighted several pathways to insulin resistance, 
including lipid accumulation, oxidative stress, and inflam-
mation[6]. An important common feature of  these mecha-
nisms is the activation of  stress-sensitive kinases includ-
ing protein kinase C ζ (PKCζ) that cause a dampening of  
insulin signaling[6,7]. 

Insulin is involved in a number of  cellular processes 
apart from nutrient metabolism, including protein syn-
thesis, mitochondrial biogenesis, growth, autophagy, pro-
liferation, differentiation, and migration[8-10]. As illustrated 
in Figure 2, the binding of  insulin to its receptor triggers 
a cascade of  cellular events that leads to nutrient uptake 
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Figure 1  Insulin actions in main insulin-sensitive tissues. Insulin has different actions in each of the main insulin-sensitive tissues. In muscle, insulin promotes 
glucose uptake and glycogen synthesis. In liver, insulin promotes glycogen synthesis and lipogenesis and reduces gluconeogenesis and the release of stored glu-
cose. In adipose tissue, insulin increases glucose uptake and lipogenesis and decreases lipolysis. In the brain, insulin Inhibits hepatic glycogenolysis and lipolysis and 
decreases appetite.



and activation of  these various cellular programs[8]. Un-
der insulin-sensitive conditions, as shown in Figure 2A, 
insulin receptor substrate (IRS) activates phosphoinosit-
ide 3-kinase (PI3K), which produces a metabolite that 
activates protein kinase B (AKT) and PKCλ/ι. PKC λ/ι, 
which also depends on lipids for activation, can inhibit 
insulin signaling by a feedback mechanism. The nuclear 

receptor peroxisome proliferator-activated receptor 
gamma, or peroxisome proliferator-activated receptor γ 
(PPARγ), is important in lipid metabolism, and is the tar-
get of  insulin sensitizing thiazolidinedione drugs (TZDs). 
PPARγ becomes activated upon binding of  lipids and 
promotes expression of  genes involved in fat storage. As 
shown in Figure 2B, under insulin-resistant conditions, 
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Figure 2  Insulin signaling in health and disease. Insulin signaling in health and disease. A: The binding of insulin to its receptor triggers a cascade of cellular 
events that lead to nutrient uptake and activation of various cellular programs. Insulin receptor substrate (IRS) activates phosphoinositide 3-kinase (PI3K) which pro-
duces a metabolite that activates protein kinase B (AKT) and protein kinase C λ/ι (PKCλ/ι). PKCλ/ι, which also depends on lipids for activation, can inhibit insulin 
signaling by a feedback mechanism. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), is important in lipid metabolism, and is the tar-
get of insulin sensitizing thiazolidinedione drugs. PPARγ becomes activated upon binding of lipids and promotes expression of genes involved in fat storage; B: Under 
insulin-resistant conditions, accumulation of lipids, oxidative stress, and pro-inflammatory cytokines cause activation of stress-sensitive kinases such as protein kinase 
C θ ( PKCθ), inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ) and c-Jun N-terminal kinase 1 (JNK1), which inhibit insulin signaling.
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GLUCOSE DISPOSAL IN MICE AND 
HUMANS
A central aspect of  glucose homeostasis is glucose dis-
posal, meaning the facilitated transport of  glucose from 
blood into storage tissues and organs. Insulin resistance 
in humans with type 2 diabetes involves defects in glu-
cose sensing and disposal in a number of  tissues, but the 
most significant effects on glucose homeostasis result 
from insulin resistance in the major glucose-disposing tis-
sues: skeletal muscle, liver and adipose tissue. 

Glucose disposal and glycogen storage patterns differ 
in mice and humans. In healthy humans, about one-third 
of  glucose is taken up by the liver[21]. Estimates of  skel-
etal muscle glucose uptake vary widely, in part because 
they are often based on indirect measurements and as-
sumptions regarding muscle mass and blood flow. One 
report that measured muscle glucose more directly using 
nuclear magnetic resonance demonstrated muscle absorb-
ing 64%-91% of  infused glucose in a single male volun-
teer[22]. A follow-up study of  11 subjects reported muscle 
glucose uptake of  90% in normal subjects and 67% in 
diabetic subjects[23]. In a separate study of  10 healthy vol-
unteers, muscle accounted for 38.3% of  systemic glucose 
disposal, based on data from blood sampled from a fore-
arm vein[24]. Overall, the data show greater glucose uptake 
in skeletal muscle than liver in humans. Genetic evidence 
underscores the importance of  skeletal muscle to whole-
body glucose tolerance in humans. Polymorphisms in the 
gene for the primary glucose transporter in muscle, glu-
cose transporter isoform 4 (GLUT4), have been linked to 
type 2 diabetes and insulin resistance[25]. Overall, defects 
in skeletal muscle glucose disposal are a major compo-
nent of  insulin resistance in humans[26].

By contrast, the liver is much more important for 
glucose disposal in mice. Interfering with glucose uptake 
in mouse liver causes whole-body insulin resistance and 
glucose intolerance, but similar manipulations in muscle 
usually do not. The muscle-specific insulin receptor 
knockout mouse has normal glucose tolerance, insulin 
sensitivity, and glucose and insulin levels, with only mild 
dyslipidemia[27]. Muscle-specific deletion of  IRS1 and 
IRS2 also does not produce a diabetic phenotype, nor 
does a whole-body knockout of  the major muscle glucose 
transporter, GLUT4[28,29]. One exception to this pattern 
may be a muscle-specific GLUT4 knockout strain that 
developed a diabetic phenotype in one study[30], a result 
that has not been replicated by others[31,32]. In contrast to 
the above strains deficient in muscle insulin signaling, a 
liver-specific insulin receptor knockout mouse strain was 
insulin resistant and severely hyperinsulinemic, and devel-
oped hyperglycemia and glucose intolerance at an early 
age (2 mo)[33]. Liver-specific deletion of  IRS1 and IRS2 
also cause insulin resistance under certain conditions[34]. 
Mice with a deletion of  the primary glucose transporter 
in the liver, GLUT2, are hyperglycemic and die at 2-3 wk 
of  age[35].

Glycogen storage is a major destination for glucose 
in mammals. In mice, approximately 8 times more glyco-

accumulation of  lipids, oxidative stress, and pro-inflam-
matory cytokines cause activation of  stress-sensitive ki-
nases such as PKCθ, inhibitor of  nuclear factor kappa-B 
kinase subunit β (IKK-β) and c-Jun N-terminal kinase 1 
(JNK1), which inhibit insulin signaling[6,7].

Evidence for insulin signaling pathways and mecha-
nisms of  insulin resistance comes from human and ani-
mal cell and tissue studies, clinical studies, and whole ani-
mal experiments. While data from various models have 
been useful in formulating and testing hypotheses, some 
approaches are more promising than others. Rodent 
models have been used in the study of  type 2 diabetes 
and insulin resistance for decades. Conditions relevant to 
the study of  insulin resistance and diabetes are induced 
in rodents using several approaches, including genetic, 
pharmacological, surgical, and dietary inductions. A num-
ber of  these approaches and models have been reviewed 
elsewhere[11-14]. Many researchers favor targeted genetic 
manipulation because it allows specific and complete 
or near-complete removal of  target gene function in a 
whole organism or specific tissues[15]. In combination 
with pharmacological, cell-based and molecular studies, 
these knockout mouse studies have mapped the insulin 
signaling pathway in mice to a high level of  detail. Other 
authors have described how pathway connections tested 
in humans have been shown to be conserved (i.e.,[16]). 
Many would argue that knockout mouse studies have 
been especially important in defining the function of  
genes for which no pharmacological or other molecular-
based functional ablation is available[17]. In this respect, 
the genetic approach has become a central component of  
preclinical research in diabetes and other fields. 

Despite this progress in our understanding of  insulin 
action, the causative molecular basis for acquired hu-
man insulin resistance remains unclear and controver-
sial. Furthermore, improved understanding of  rodent 
cell signaling has not translated into improved human 
therapeutics. To wit, it has been almost 20 years since 
the first insulin signaling knockout mouse studies were 
published[18,19], but no new drugs targeting the insulin 
signaling phosphorylation cascade have emerged to treat 
insulin resistance in type 2 diabetes[9]. While much of  this 
research is conducted for the purpose of  hypothesis test-
ing rather than drug development per se, the identification 
of  drug targets is often a primary or secondary goal[20]. 
In light of  this, we discuss the limitations of  research on 
insulin resistance using knockout mice of  select proteins 
important in the insulin signaling cascade (Figure 2). The 
following sections will focus mainly on peripheral insulin 
resistance and extrapancreatic insulin-sensitive tissues, 
since many therapeutic and research efforts are in this 
area. We first address physiological, cellular, and molecu-
lar differences in glucose metabolism between mice and 
humans that limit translatability. We then review select 
knockout mouse models of  insulin signaling dysfunction, 
identifying cases with contradictory or untranslatable re-
sults. Finally, we briefly discuss the limitations of  genetic 
manipulations of  these targets in mice in regard to the 
search for safe and effective drugs for type 2 diabetes. 

Bunner AE et al . Insulin signaling knockout mouse models



150 April 15, 2014|Volume 5|Issue 2|WJD|www.wjgnet.com

gen is stored in the liver than skeletal muscle[36], but the 
reverse is true in humans, where 3-8 times more glycogen 
is found in skeletal muscle[37]. These physiological differ-
ences in glucose disposal and storage have implications 
for modeling insulin resistance, since muscle and liver 
have different roles and different metabolic and signaling 
pathways.

There are two important differences in glucose trans-
port between liver, the primary glucose disposal organ in 
mice, and skeletal muscle, the primary glucose disposal 
organ in humans. First, skeletal muscle cells have multiple 
pathways for glucose transport. Contraction-stimulated 
glucose transport in skeletal muscle is insulin-indepen-
dent, mediated through 5’ adenosine monophosphate  
activated protein kinase-mediated signaling mecha-
nisms[38]. In contrast, liver has no such activity-stimulated 
transport method. Second, the transporters involved in 
glucose uptake are different in the two tissues. In liver, 
the low-affinity GLUT2 is present at high levels on cell 
membranes independent of  insulin or other signaling[39], 
and glucose transport rates vary with the extracellu-
lar concentration of  glucose[40]. In contrast, in skeletal 
muscle cells, the high-affinity glucose transporter GLUT4 
is translocated from internal vesicles to the plasma mem-
brane in response to glucose uptake signals[41]. In human 
skeletal muscle cells, this transport is facilitated by clath-
rin isoform CHC22, which is not present in the mouse[42]. 
The rate-limiting step in glucose metabolism in liver is 
phosphorylation, while in skeletal muscle it is transport 
through GLUT4[43]. The divergent features of  cells in 
these organs, combined with the divergent physiology of  
rodents and humans, means that glucose disposal is af-
fected very differently in the different species. 

Because mice rely principally on the liver for glucose 
homeostasis, while humans rely on skeletal muscle where 
transport mechanisms and biochemical pathways dif-
fer, mice may not be expected to be analogous to type 
2 diabetes patients in regards to mechanisms of  glucose 
metabolism or its dysfunction.

Mice and humans have a number of  other metabolic 
differences. The small size and fast metabolism of  mice 
enables heart rates in the range of  350-550 beats per 
minute, while in humans, normal heart rate is about 70 
beats per minute[44]. Mice are capable of  the physiological 
state of  torpor, a state of  reduced metabolic rate, while 
humans are not[45]. Prolonged fasting in humans impairs 
insulin-stimulated glucose utilization, but causes enhance-
ment in mice[46]. In regards to eating patterns, mice con-
sume most of  their food at night[45], and an overnight fast 
of  14-18 h, typical for laboratory experiments, induces a 
state akin to starvation[47]. In addition, circulating lipids 
have an inverted composition in mice, with high-density 
lipoprotein (HDL) being typically higher than low-density 
lipoprotein (LDL), while HDL is lower in humans[48]. The 
thermoneutrality point, that is, the temperature at which 
an organism expends minimal energy for temperature 
regulation, is higher in mice[49]. This last difference could 
be compensated for if  mice were housed above room 
temperature, but that is not standard practice. 

Finally, experiments investigating mouse metabolism 
present technical challenges. Insulin sensitivity is often 
measured using a hyperinsulinemic-euglycemic clamp 
test, which involves either implanted arterial catheters or 
repeated blood sampling. The results of  this test are de-
pendent on a number of  experimental factors which are 
not standardized between laboratories, including fasting 
time, anesthesia use, and blood sampling site[46]. Fast-
ing glucose, insulin, and lipid levels are often measured 
after 14-18 h overnight fasts, but this induces a catabolic 
state in mice, who normally eat mostly at night. Data 
shows that a 6 h fast is best to assess glucose tolerance in 
mice[50].

KNOCKOUT MODELS OF INSULIN 
SIGNALING
Mouse models of  diabetes are often used to explore sig-
naling pathways[13]. The following sections highlight cases 
relevant to insulin signaling dysfunction where similar or 
identical genetic manipulations produced disparate re-
sults. These cases are consistent with other results show-
ing differences in insulin action, secretion, and responses 
to hypoglycemia in different inbred mouse strains[51]. 
Previous reviewers have also noted the strong effect of  
genetic background in knockout mouse experiments[52]. 
Other factors influencing disparate findings include com-
pensatory metabolic adjustments and technical challenges 
associated with evaluating mouse metabolism. Later, we 
will focus on the challenges of  translating mouse knock-
out results to humans. 

INSULIN RECEPTOR AND INSULIN 
RECEPTOR SUBSTRATE
Binding of  insulin to the insulin receptor is the first step 
in the insulin signaling pathway. Mice with complete dele-
tion of  the insulin receptor are about 10% underweight 
and suffer from chronic hyperglycemia[53,54]. They die 
within several days of  birth due to diabetic ketoacido-
sis. In humans, donohue syndrome is a rare monogenic 
disease resulting from mutation of  the insulin receptor. 
Individuals with this disease suffer from severe pre-natal 
and post-natal growth retardation, fasting hypoglycemia, 
and post-prandial hyperglycemia[55]. They generally die 
before adulthood. The difference between the glucose 
homeostasis in mice and humans with this mutation may 
be attributable to the fact that the human pancreas devel-
ops earlier in gestation, hence better enables the compen-
satory hyperinsulinemia[55]. 

The pancreatic beta-cell specific insulin receptor 
knockout mouse strain (called BIRKO) has impaired in-
sulin response to glucose challenge and develops impaired 
glucose tolerance and high insulin levels[56]. In the initial 
description of  this mutant strain, glucose levels and body 
weight were normal, however, a follow-up report from 
the same laboratory described consistent hyperglycemia 
and sporadic obesity[57]. In the same report, a muscle 
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and beta-cell double insulin receptor knockout (BIRKO-
MIRKO) mouse strain had an unexpectedly mild condi-
tion. This strain had impaired glucose tolerance, mild 
hyperglycemia, high triglycerides and free fatty acids, and 
extra fat pad mass. These findings would seem to indicate 
that muscle-mediated glucose disposal is dispensable for 
normal glucose homeostasis in mice, but 2-deoxyglucose 
uptake studies showed that both muscle-specific insulin 
receptor knockout (MIRKO) and BIRKO had normal 
muscle glucose uptake, suggesting most muscle glucose 
uptake under these conditions is insulin-independent[57]. 
Studies of  liver glycogen synthesis and liver glycogen 
content confirm that mice with insulin insensitive muscle 
shifted glucose utilization away from muscle and towards 
liver[57].

Mouse strains lacking insulin receptor in other tissues 
have been developed. A knockout of  insulin receptor in 
neuronal tissue (NIRKO) demonstrated elevated body 
weight, white adipose tissue, serum triglycerides, and cir-
culating leptin, with most of  these changes being more 
pronounced in the females[58]. In addition, both sexes of  
NIRKO mice had reduced fertility, demonstrating the 
importance of  insulin in reproduction. A knockout of  
insulin receptor in adipose tissue (FIRKO) had low fat 
mass, and the normal relationship between leptin levels 
and fat mass was disrupted[59]. These mice were protected 
against age-related glucose intolerance.

The IRS proteins transmit signals from the insulin 
and IGF1 (insulin-like growth factor 1) receptors. Two 
groups independently showed a significant pre-natal and 
post-natal growth defect in IRS1 knockout mice[18,19] 
(Table 1). Despite having similar genetic backgrounds, 
only one of  the strains exhibited glucose intolerance as 
measured by a glucose tolerance test[18]. In addition, the 
two strains had significantly different growth defect se-
verities, with a 40%-60% decrease in weight at various life 
stages observed in one study[18], and a 20%-30% decrease 
in the other[19]. These differences could have been due to 
the genetic manipulation approaches or the genetic back-
grounds. 

Two independent groups described IRS2 knockout 
mouse models, and the phenotypes were different despite 
similar genetic backgrounds. Withers et al[60] observed a 
10% decrease in body weight throughout all life stages 
for the IRS2 knockout mice in a C57BL6 × 129Sv back-
ground, while Kubota et al[61] observed the IRS knockouts 
to be of  normal size in a C57BL/6 × CBA mixed back-
ground. Fasting hyperglycemia was observed at age 6 wk 
in Withers et al[60], but average glucose levels did not reach 
hyperglycemic levels in Kubota et al[61]. Hyperinsulinemia 
and glucose tolerance showed a similar pattern: more se-
vere, earlier phenotypes observed in Withers et al[60] than 
in Kubota et al[61]. Reduced β-cell mass was observed by 
both groups.

  Model Ref. Genetic background Observed discrepancy

  IRS1 knockout Tamemoto et al[19] C57BL/6 × CBA Growth defect twice as severe in Araki 1994
Araki et al[18] C57BL/6

  IRS2 knockout Withers et al[60] C57BL6 × 129Sv Growth defect observed only in Withers et al[60]. Much more 
severe glucose dysregulation in Withers et al[60]Kubota et al[61] C57BL/6 × CBA mixed

  IR and IRS1 double 
  heterozygous knockout

Kulkarni et al[62] C57BL/6
129/Sv
DBA/2

Diabetes not observed in 129/Sv mice, observed in 85% of 
C57BL/6 mice and 64% of DBA/2 mice. Glucose intolerance 
only in C57BL/6 strain

  AKT2 knockout Cho et al[64] C57BL/6 More severe hyperglycemia and hyperinsulinemia in 
Garofalo et al[63]. Growth defect only in Garofalo et al[63]Garofalo et al[63] DBA/1lacJ

  AKT1 knockout Chen et al[65] C57BL/6 × 129R1 High neonatal mortality only in Cho et al[64]. Improved glucose 
tolerance and insulin sensitivity only in Buzzi et al[68]Cho et al[66] C57BL/6

Buzzi et al[68] 129/Ola, C57BL/6 mixed
  Pik3r1 heterozygote Mauvais-Jarvis et al[72] 129Sv, C57BL/6 mixed Improved glucose tolerance and insulin sensitivity and low 

glucose and insulin levels on normal diet only in Mauvais-
Jarvis et al[72]McCurdy et al[73] C57BL/6SVJ

  Liver-specific Pik3ca Sopasakis et al[74] 129Sv, C57BL/6, FVB mixed Insulin resistance and glucose intolerance on normal diet in 
Sopasakis et al[74] onlyChattopadhyay et al[75] 129, C57BL/6J mixed

  GLUT4 heterozygous knockout Stenbit et al[76] CD1, C57BL/6 mixed Unexpected more severe phenotype in heterozygous knockout 
than homozygous

  PKCλ heterozygous knockout Farese et al[79] C57BL/6, 129P2/Sv, FVB mixed Unexpected more severe hepatic steatosis in heterozygous 
knockout than homozygous

  PKCδ knockout Leitges et al[81] 129/SV × Ola High neonatal mortality observed only in Bezy et al[82]

Bezy et al[82] C57BL6/J
  PPARγ
 

He et al[86] C57BL/6J Resistance to diet-induced insulin resistance only in 
Jones et al[85] studyJones et al[85] C57BL/6J, FVB mixed

 Muscle-specific PPARγ Norris et al[87] 129/sv, C57BL/6, FVB mixed Insulin resistance and glucose intolerance on normal diet in 
Hevener et al[88] only. Improvement with rosiglitazone in Norris 
et al[87] only

Hevener et al[88] C57BL6/J

Table 1  Knockout mouse reproducibility

Reproducibility problems in knockout mouse studies. Some variant results can be explained by differences in genetic background. IRS: Insulin receptor 
substrate 1; IR: Insulin receptor; AKT2: Protein kinase B isoform 2; GLUT4: Glucose transporter isoform 4; PKCλ: Protein kinase C λ; PPARγ: Peroxisome 
proliferator-activated receptor γ.
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Kubota et al[61] suggested that the difference in glucose 
and insulin levels between the two reports was likely due 
to low β-cell mass in their strain, caused either by β-cell 
death or by the failure of  insulin-resistance induced hy-
perplasia, and acknowledge that genetic differences other 
than the intended manipulation may influence the results. 
The authors concluded based on their data and data from 
a related study that both β-cell dysfunction and reduced 
β-cell mass can contribute to the murine diabetic state, 
but only studies of  human patients can validate whether 
one or both mechanisms are more important in the 
pathogenesis of  type 2 diabetes in humans. 

Double heterozygous knockout of  IR and IRS1 
were generated in three different genetic backgrounds: 
C57BL/6, 129/Sv and DBA/2[62]. While all three strains 
had mild growth retardation, the results in regards to glu-
cose homeostasis were drastically different. In C57BL/6 
mice, the double heterozygous knockout caused severe 
hyperglycemia and hyperinsulinemia in the vast majority 
of  cases, whereas the glucose levels of  129Sv mice were 
not significantly different from control littermates. In 
DBA mice, more than half  of  the mice were hypergly-
cemic but maintained normal glucose tolerance. Triglyc-
erides were significantly reduced in the double heterozy-
gous knockouts of  the B6 and DBA strains, and the wild 
type DBA strain had significantly elevated triglycerides as 
compared to the other wild type strains[62]. 

AKT/PROTEIN KINASE B
The metabolite phosphatidylinositol 3,4,5-trisphosphate 
(PIP3) activates AKT/protein kinase B and atypical 
protein kinase C. AKT has three isoforms in mammals, 
of  which AKT1 and AKT2 are most important for me-
tabolism. Two independently developed AKT2 knockout 
mouse strains in different backgrounds developed hyper-
glycemia, glucose intolerance, and insulin resistance[63,64]. 
Garofalo et al[63] observed hypoinsulinemia due to pan-
creatic β-cell death in a subset of  male mice, and hyper-
insulinemia with no pancreatic changes in the remainder, 
while Cho et al[64] observed hyperinsulinemia and associ-
ated pancreatic hyperplasia. In Garofalo et al[63], both hy-
perglycemia and hyperinsulinemia were more severe than 
in Cho et al[64], with average fed insulin measurements 
five times higher. Also, Cho et al[64] observed normal growth 
in the AKT2 knockout, but Garofalo et al[63] observed 
a mild growth deficiency evident at all life stages. Only 
Garofalo et al[63] observed lipoatrophy and high levels of  
serum triglycerides. The control mice in Garofalo et al[63] 
had near-diabetic random fed glucose levels that were al-
most as high as the knockout mice in Cho et al[64] Neither of  
these knockout strains were obese. 

The characteristics of  AKT1 knockout mouse strains 
are also sensitive to genetic background and environ-
mental factors. Two labs independently reported that 
AKT1 knockout mice with different genetic backgrounds 
had a growth defect causing 15%-20% reduced body 
weight[65,66]. One of  the studies observed high neonatal 
mortality among the knockout mice[66], while the other 

observed high mortality with γ-radiation[65]. Glucose tol-
erance in Chen et al[65] appeared normal, but the glucose 
tolerance test was performed using a longer fasting time 
and lower glucose dose than is optimal[50]. One study 
demonstrated a non-significant improvement in glucose 
tolerance and insulin sensitivity in males. A similar strain 
was later shown to be resistant to diet-induced obesity[67]. 
Later data on a third, independently developed AKT1 
knockout strain showed dramatic improvement in glu-
cose tolerance and insulin sensitivity[68]. 

Studies of  spontaneous human genetic variants in 
AKT1 and AKT2 have confirmed the importance of  
these proteins in growth and glucose homeostasis, mostly 
respectively, although the manifestations of  the mutations 
differ between humans and mice[16]. For example, the 
human patients with a specific AKT2 mutation display 
asymmetric hypertrophy[69], while the above-described 
AKT2 knockout mouse models have normal growth[64] or 
a growth deficiency[63].

PHOSPHOINOSITIDE 3-KINASE
PI3K, an enzyme complex composed of  a regulatory 
subunit and a catalytic subunit that produces the metabo-
lite PIP3. PI3K is activated by IRS proteins in the insu-
lin signaling cascade (Figure 2). In humans, PI3K gene 
polymorphisms are associated with cancer risk[70] but not 
diabetes, to our knowledge.

Complete loss of  the Pik3r1 gene, which encodes 
isoforms of  the regulatory subunit of  PI3K, results in 
perinatal lethality in mice, perhaps due to impaired B 
cell development[71]. Mice heterozygous for Pik3r1 dele-
tion, having attenuated expression of  all isoforms of  the 
regulatory subunit, had improved glucose tolerance and 
insulin sensitivity and low glucose and insulin levels[72]. 
Lipid metabolism was unchanged except for a modest 
increase in serum free fatty acids, indicating that the ob-
served insulin sensitivity was not due to indirect effects 
via changes in lipid metabolism. A minor increase in basal 
muscle glucose uptake was observed, but the authors 
note that changes in liver were likely most responsible for 
the increased insulin sensitivity[72]. A later, independent 
study observed that the heterozygous knockout mice 
were essentially indistinguishable from control mice on 
a normal diet[73]. On a high-fat diet, these mice showed 
lower fasting insulin levels, improved overall insulin sen-
sitivity, and improved glucose uptake in fat and muscle[73]. 
Macrophage accumulation was reduced in the adipose 
tissue of  these heterozygous knockout mice, but results 
from bone marrow transplant experiments suggested the 
improved insulin sensitivity did not occur solely via PI3K’s 
role in inflammation.

The catalytic subunits of  PI3K have also been stud-
ied using knockout mouse strains. Liver-specific deletion 
of  Pik3ca caused mild obesity, insulin resistance, glucose 
intolerance, and high glucose and insulin levels[74]. The 
same genetic manipulation in a second laboratory pro-
duced a strain with normal glucose and insulin levels and 
body weight[75]. The Pik3ca knockout mice in the second 
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study were resistant to high-fat diet induced hepatic ste-
atosis and somewhat resistant to diet-induced glucose 
intolerance as well[75]. For this gene, liver-specific deletion 
produced diabetes-like symptoms in one laboratory, but 
in another laboratory, glucose homeostasis was identical 
in control and knockout mice[74,75]. 

GLUT4
As described above, GLUT4 is the major glucose trans-
porter in muscle, the most important tissue type for 
glucose disposal in humans. Unexpectedly, in GLUT4 
knockout mice, glucose levels are normal except for mild 
fed hyperglycemia and fasted hypoglycemia observed 
only in males[29]. Consistent with results regarding insulin 
signaling and growth[18], these animals display signifi-
cant growth retardation, shortened life spans, cardiac 
hypertrophy, and reduced adipose tissue[29]. Somewhat 
surprisingly, mice heterozygous for the GLUT4 knockout 
have a more severe phenotype. A diabetes-like condition 
developed at varying ages, with a majority of  males both 
hyperinsulinemic and hyperglycemic by age 5-7 mo[76]. 

The authors pointed out that the unexpectedly mild 
condition of  the homozygous GLUT4 knockout and 
more severe condition in the GLUT4 knockout het-
erozygote were likely due to compensatory metabolic 
adjustments that occur during development. These 
could include the transfer of  glucose disposal from tis-
sues that primarily use GLUT4 to tissues that primarily 
use GLUT2, as observed in the muscle-specific GLUT4 
knockout[30], or the upregulation of  alternative glucose 
transporters[52]. 

PROTEIN KINASE C
Protein kinase C enzymes (PKCs) are involved in regulat-
ing a variety of  cellular functions in mammals, including 
insulin signaling[77]. Atypical PKCs include the isoforms 
PKCλ/ι and ζ (PKCλ refers to the mouse isoform of  
PKCι)[78]. Activated PKCs can inhibit insulin signaling by 
a feedback mechanism that prevents signal transduction 
between insulin receptor and IRS[7,78]. 

Atypical protein kinase C family member PKCλ was 
knocked out specifically in mouse muscle, resulting in 
diabetic symptoms including glucose intolerance, insu-
lin resistance, hyperglycemia, and high insulin levels[79]. 
Altered fat metabolism was also observed: high triglycer-
ides, and mildly elevated free fatty acids and liver triglyc-
erides. While some symptoms were observed in both the 
heterozygous and homozygous muscle-specific knockout 
of  PKCλ, the heterozygotes were as insulin resistant and 
glucose intolerant as the homozygous knockouts, and 
had more abdominal obesity and hepatic steatosis[79]. This 
is unexpected, since the heterozygous knockout had re-
duced, but not ablated, expression of  PKCλ. 

Differential expression of  PKCδ has been identified 
as one factor in the different vulnerability of  common 
laboratory mouse strains to diabetes[80]. One study of  a 

PKCδ knockout mouse strain in a 129/Sv × Ola genetic 
background had normal growth and development[81]. 
Surprisingly, the same deletion in the C57BL6/J strain 
caused a high mortality rate, with survivors being 14% 
underweight[82]. The C57BL6/J PKCδ knockout mouse 
had better glucose tolerance than control mice[82], but 
glucose tolerance was not tested in the original knockout. 
The authors noted that improved glucose tolerance may 
have been due to decreased inflammation in adipose tis-
sue[82]. In humans, PKCδ deficiency can cause B-cell defi-
ciency with severe autoimmunity[83]. 

PEROXISOME PROLIFERATOR-
ACTIVATED RECEPTOR γ
The nuclear receptor PPARγ, becomes activated upon 
binding of  lipids and is important for lipid metabolism 
and storage, adipogenesis, and insulin sensitivity. This nu-
clear receptor is the target of  insulin-sensitizing TZDs[84]. 

Two independently generated adipose tissue-specific 
PPARγ knockout strains showed important differences 
in glucose homeostasis under high-fat diet conditions. 
On normal chow, both these strains had reduced adipose 
tissue mass, high blood lipid levels, and hepatic steatosis, 
but glucose tolerance was normal[85,86]. On high-fat diet 
with 40% of  calories from fat, He et al[86] observed hy-
perinsulinemia and insulin resistance in both the knockout 
and control mice, although these traits were more severe in 
the knockout. The knockout strain studied by Jones et al[85] 
was resistant to diet-induced hyperinsulinemia and insulin 
resistance despite being subjected to a more extreme 
high-fat diet, with 60% of  calories from fat. The knock-
out strains in both studies were more prone to high-fat 
diet induced hepatic steatosis.

Two studies on independently developed muscle-spe-
cific PPARγ knockout models have provided contradicto-
ry findings regarding the mechanism of  action of  TZDs. 
The first strain was more susceptible to diet-induced 
obesity, glucose intolerance, and insulin resistance but 
was indistinguishable from controls on a normal diet[87]. 
Rosiglitazone reduced the hyperinsulinemia and impaired 
glucose homeostasis observed in this strain on high-fat 
diet, therefore the authors suggested that muscle PPARγ 
is not required for the positive effects of  this TZD[87]. In 
contrast, the second strain developed insulin resistance 
and glucose intolerance on a normal diet[88]. Glucose dis-
posal in a hyperinsulinemic-euglycemic clamp experiment 
was not improved with rosiglitazone treatment, suggest-
ing that the insulin sensitizing effect of  TZDs is depen-
dent on muscle PPARγ. In this case, two mouse models 
have provided conflicting data not just on the role of  a 
gene, but also on a drug mechanism of  action. 

In conclusion, we above described several cases where 
genetic modification of  insulin signaling genes produced 
significantly, sometimes dramatically, different results in 
separate studies or varied genetic backgrounds (Table 1). 
We also described two cases where heterozygous knock-
outs had unexpectedly severe phenotypes: GLUT4 and 
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PKCλ. Although the mechanisms behind the unexpected 
observations are unknown, it is known that organisms 
respond unpredictably to the absence of  gene products 
during development. Compensatory metabolic adjust-
ments that may occur during development constitute 
a general limitation of  knockout mouse models. These 
concerns are mitigated by the use of  conditional knock-
outs, however, those strains require injection or gavage of  
an inducing drug, which can produce artifacts[89]. These 
examples illustrate the challenges associated with produc-
ing reliable, reproducible, and translatable results in mice.

CLINICAL TRANSLATION
In the following section, we will address factors which 
limit the applicability of  mouse models to human thera-
peutic treatment development. As described above, 
insulin signaling gene knockout mice often have pheno-
types unrelated to type 2 diabetes including growth de-
fects[18,33,60,63], neonatal mortality[66], and others, including 
resistance to tumor formation[90]. These phenotypes are a 
result of  the loss of  diverse non-metabolic insulin func-
tions, and these studies have yielded information about 
those biological processes in mice. At this juncture, it is 
worth examining whether these mouse models of  insulin 
resistance are contributing positively to the development 
of  new, unique, safe, and effective type 2 diabetes treat-
ments. Here we focus on select pharmaceuticals targeting 
the signaling proteins discussed above. 

As might be predicted based on the importance of  
insulin to growth, several drugs targeting insulin signal-
ing molecules PI3K and AKT are under investigation as 
therapeutics for cancer[91,92]. Unsurprisingly, some PI3K 
inhibitors have been shown to induce insulin resistance[93].

The nuclear receptor PPARγ is an important drug 
target, and is genetically linked to insulin sensitivity and 
type 2 diabetes risk[94,95]. However, PPARγ-activating 
TZD drugs are associated with a number of  side effects 
and risks, including congestive heart failure[96]. Although 
some studies have been inconclusive in regards to cer-
tain risks associated with the TZD rosiglitazone[97], one 
meta-analysis of  42 studies found that the risk of  cardio-
vascular death increased 64%[98]. Rodent studies did not 
predict these deaths, and in fact have provided conflict-
ing evidence regarding cardioprotective and cardiotoxic 
effects of  TZDs. The TZD pioglitazone was shown to 
limit myocardial infarct size after coronary occlusion in 
mice[99]. Similar results have been seen for rosiglitazone 
after ischemia/reperfusion injury[100]. TZDs have been 
shown to have both positive and negative effects on car-
diac hypertrophy in rodents[101,102]. 

An inhibitor of  PKCβ, LY333531, or ruboxistaurin, 
has been investigated as a potential treatment for diabetic 
microvascular complications[103]. Although initially prom-
ising results were observed in a trial for diabetic neuropa-
thy, the drug was not shown to be effective in a larger, 
placebo-controlled study[104]. Promising results were also 
seen in a small trial for diabetic kidney disease[105], but 
these have not been replicated at a larger scale. Eli Lilly 

withdrew the marketing authorization application for 
ruboxistaurin as a treatment for diabetic retinopathy. 
Rather than diabetes or its complications, PKC inhibitors 
are now being investigated as potential treatments for 
cancer[106] and conditions requiring immunosuppressive 
therapy[107].

CONCLUSION
The limitations of  these mouse models of  insulin sig-
naling dysfunction arise from a number of  sources. 
Described above are physiological and molecular-level 
differences between mice and humans, reproducibility 
problems in mouse experiments, and complicating fac-
tors in drug discovery efforts that interfere with translat-
ing mouse results to human patients.

Researchers in a variety of  fields have commented on 
the limitations of  mouse models of  human disease[108,109]. 
No single mouse model can accurately represent the 
spectrum of  symptoms and complications associated 
with type 2 diabetes[11]. The translation of  results from 
mice is further complicated by a plethora of  immutable 
species differences at every level of  glucose regulation 
from the molecular to the population level[110-113]. In addi-
tion, mice are not prone to hypertension, high LDL cho-
lesterol, atherosclerosis, sedentary behavior, obesity, insu-
lin resistance, or many other features common to human 
type 2 diabetes patients. Although all laboratory mice are 
more insulin resistant and have more fat tissue than their 
free-living counterparts[114], the risk for mice developing 
these symptoms varies widely depending on the specific 
inbred strain[62,80]. Genetic background, housing condi-
tions, and diet can dramatically affect results. Examples 
highlighted here have shown that different studies even 
from the same laboratory often obtain different results 
with identical genetic modifications.

The idea that the limitations of  genetically modified 
mouse models of  human disease, and rodent models in 
general, are severe enough to warrant a shift in research 
approaches is controversial, and will likely continue to 
be for the next decade. Nonetheless, science in many 
medical fields has been progressing away from crude, 
animal-based experiments and towards more high-tech 
and human-based research methods, and that trend will 
continue. For example, one area of  active research is ad-
ditional uncharacterized insulin signaling cofactors, which 
could be identified using phosphoproteomics[115], protein 
array techniques, or protein interaction-based tech-
niques[116] including yeast two-hybrid and computational 
approaches. Similar approaches could be used to identify 
gene products involved in acquired insulin resistance. In 
addition, insulin resistance can be investigated in human 
cells by gene silencing[117], metabolomics[118], and microar-
ray technology. Remaining questions about the role of  
inflammation and accumulated intracellular lipids can be 
studied using tissue biopsy samples from various patient 
populations[119]. Many more in vitro[120], in silico[121], non-
invasive[122], and minimally invasive[123] approaches are 
available and in development. 
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In the last 20 years, the use of  genetically modified 
mice to investigate diabetes has become routine. While 
some findings have borne out in humans, investigations 
of  insulin resistance using knockout mouse models are 
inherently limited by physiological, genetic, and metabolic 
differences between mice and humans. Researchers and 
patients would benefit from a transition towards human-
based research methods.
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